
1

We acknowledge the feedback and support of the following colleagues: Andong Hu (KTH Royal Institute of Technology, USA), Anthony Kougkas (Illinois Institute of Technology, USA), Bronis R. de Supinski (Lawrence Livermore National Laboratory, USA), Connor Scully-Allison (University of Chicago,
USA), David Boehme (Lawrence Livermore National Laboratory, USA), Dewi Yokelson (Advanced Micro Devices, Inc., USA), Gian Luca Delzanno (Los Alamos National Laboratory, USA), Ivy Peng (KTH Royal Institute of Technology, USA), Izzet Yildirim (Illinois Institute of Technology, USA), Jack Marquez
(University of Tennessee, USA), Jakob Luettgau (Inria, France), Katherine E. Isaacs (University of Utah, USA), Luca Pennati (KTH Royal Institute of Technology, USA), Stefano Markidis (KTH Royal Institute of Technology, USA), Vanessa Lama (Oak Ridge National Laboratory, USA), Xian-He Sun (Illinois
Institute of Technology, USA).

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 24-SI-005 (LLNL-POST-2010147). This material is based upon work
supported by the U.S. National Science Foundation under Award No. 1841758, 1900888, 2138811, and 2331152.

Dissertation Statement AMG2013: Proxy for Fluid Dynamics MuMMI: Workflow for Molecular Dynamics iPIC3D: Simulation of Planetary-Scale Plasma Physics

Analytics4X: General-Purpose Framework for Analysis and Optimization of
HPC Data Movement

Ian Lumsden1 (Student), Michela Taufer1 (PhD Advisor)
Other Mentors: Stephanie Brink2, Olga Pearce2, Hariharan Devarajan2, Jae-Seung Yeom2, Tom Scogland2

1University of Tennessee, Knoxville 2Lawrence Livermore National Laboratory

FIND OUT MORE AT:
globalcomputing.group

Analytics4X Framework

Community Challenges Our Solutions

Profiling tools can capture compute
performance well, but they lack the

ability to filter and focus on data
movement and I/O layers at scale

Workflow applications introduce
complex and irregular I/O patterns that
are often not well-optimized, causing

data movement inefficiencies and longer
time-to-solution

In simulations, I/O phases vary in
frequency, size, and access pattern;
static storage configurations fail to
provide optimal performance for all

phases, causing bottlenecks

Develop and integrate a novel Call Path
Query Language into LLNL’s Thicket

performance analysis library to enable
complex filtering of performance profiles
and focused analysis on data movement

and I/O layers

Instrument workflow execution with
middleware-level I/O tracking using

Thicket to capture detailed I/O patterns
and guide workflow-aware optimizations

Deploy performance monitoring and IOR
benchmarking to identify application I/O
phases and dynamically match them to

the most suitable storage configurations

Queries

Query Node: funcD

Query Node: funcA

Query Node: main

Quantifier: how many nodes in a
call path to match to a query node

Predicate: what conditions must be
satisfied for a node to match a
query node

main

funcA funcB

funcC funcD

query = [
(“.”, {
“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”
}),
“*”

]

Object-based Dialect
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*"
AND p."PAPI_L2_TCM" > 5
"""

String-based Dialect
query = QueryMatcher().match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”])

is not None
and row[“PAPI_L2_TCM”] > 5

).rel(“*”)

Base Syntax

+ Support any query
- Require Python libs

knowledge
- Work with Python only

+ Use built-in Python
objects

- Support limited queries
- Work with Python only

+ Work with any language
- Support limited queries

Query Example: Find all subgraphs rooted at a MPI node with more than 5 L2 cache misses

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining Time*

pthread_spin_lock.c:26 memset.S:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining Time*

* “Remaining Time” categories = functions that take up less than 5% of the total time considered

Number of MPI Ranks

P
er

ce
n

t
M

P
I_

A
llg

at
h

er
 T

im
e

With Query Language

SSD

DYAD
Client

DYAD
Service

DYAD
Client

SSD

Node 1 Node 2

Analytics
Emulator
(1 core)

MD
Emulator
(1 core)

DYAD

● Pros:
○Provides easy use of local storage
○Provides built-in sync

● Cons:
○Supports only write-once, read-many I/O

● Pros:
○Provides high throughput for large, bulk-

synchronous I/O
● Cons:
○Struggles with small or unsynchronized I/O
○Does not provide built-in sync

JAC (644.2 KiB) STMV (28.5 MiB)

Lu
st

re
D

YA
D

✗

Cannot
usemain

funcA funcB

funcC funcD

Call Graph

Metrics
Name: funcA
Time: 95 µs

L2 Cache Misses: 7

Performance
Measurement
Tool (Profiler)

HPC
Application

Visualization
and Analysis

Performance
Data Files

✓ Can use

889 864 866 915

Node 1 Node 2

Lustre Client

Lustre File System

Analytics
Emulator
(1 core)

MD
Emulator
(1 core)

Lustre

Lustre Client

We develop a novel Call Path Query Language and integrate it into LLNL’s Thicket
performance library to enable complex filtering of profiles using the call graph

By applying the query language to runs of AMG2013 with both MVAPICH and
Spectrum-MPI, we can not only identify that MPI_Allgather is the largest
bottleneck, but we can also identify that pthread_spin_lock is the largest single
bottleneck within MPI_Allgather

Lesson Learned:

Profile-level performance analysis can be extended to reveal detailed
data movement patterns

JAC:

● 23.5K atoms

● 644.2 KiB Frames

● 880 stride

ApoA1:

● 92.2K atoms

● 2.5 MiB Frames

● 294 stride

F1 ATPase:

● 327.5K atoms

● 8.8 MiB Frames

● 92 stride

STMV:

● 1.1M atoms

● 28.5 MiB Frames

● 28 stride

JAC
ApoA1

F1

ATPase
STMV

We instrument a molecular dynamics workflow with an ensemble of one-to-one
I/O patterns using LLNL’s Caliper profiler and analyze the resulting performance
data with Thicket and our Call Graph Query Language to study the behavior of
two I/O tools: Lustre and LLNL’s DYAD middleware

We find that leveraging local resources and efficient communication protocols
enables better scalability as data sizes (represented by molecular model) increase

Lesson Learned:

Middleware can substantially improve data movement efficiency for
workflows by aligning I/O with workflow execution patterns

High-Level I/O Characteristics of iPIC3D

Job Time 766.8s

I/O Time 283.1s

I/O Phases Restart Data,
Field Data,
Moment Data

Lesson Learned:

Matching I/O phases to targeted storage systems can yield substantial
performance gains, but requires phase-aware monitoring and tuning

eScience 2022
Paper:

IPDPS 2024
Workshop Paper:

Cluster 2025
Workshop Paper:

CV:

Restart Data Field Data Moment Data

Number of Files 128 1 1

Processes per File 1 128 128

Total I/O per File (MB) 115074 128 64

Transfer Size (MB) 498.2 ± 0.2 1.0 ± 0.5 0.5 ± 0.0

Percent I/O Time 93.564% 0.007% 0.006%

I/O Bandwidth (MB/s) 2029.4 27.4 26.4

We deploy LLNL’s Caliper and DFTracer performance monitoring tools, LLNL’s
DFAnalyzer performance analysis tool, and IOR benchmarking to identify iPIC3D’s
I/O phases and dynamically match them to the most suitable storage
configurations on LLNL’s Tuolumne supercomputer

Step 1:

Analyze iPIC3D’s I/O to identify
dominant phases and quantify

their performance

Step 2:

Benchmark each phase with
IOR on the Rabbit storage

system and the system-wide,
global Lustre to determine

optimal storage configurations

Step 3:

Integrate the optimized
storage configurations back

into iPIC3D

Profiling tools can capture compute performance well, but they lack the ability to filter
and focus on data movement and I/O layers at scale

Workflow applications introduce complex and irregular I/O patterns that are often
not well-optimized, causing data movement inefficiencies and longer time-to-solution

In simulations, I/O phases vary in frequency, size, and access pattern; static storage
configurations fail to provide optimal performance for all phases, causing bottlenecks

M = MVAPICH S = Spectrum-MPI

Number of MPI Ranks

P
er

ce
n

t
M

P
I T

im
e

We apply the following query to the
profiles of AMG2013 to identify the
bottlenecks within MPI_Allgather:

query = [
(“.”, {

“name”: “P?MPI_Allgather”
}),
“*”

]

Percent of AMG2013 Runtime Spent in
MPI Functions

The Rabbit storage system
is a rack-level, software-
defined I/O accelerator
engineered to bridge the
gap between compute and
storage performance on
exascale systems

By mapping each I/O phase of iPIC3D to its optimal Rabbit configuration based on
IOR benchmarking, we achieve up to a 4.85x I/O throughput improvement and up
to a 1.45x overall application speedup

To continue to accelerate scientific discovery in the exascale era
and beyond, we need a general-purpose, adaptable analytic

framework for optimizing data movement in both monolithic
and modular workflow-based applications.

To design this tool, we first aim to understand and optimize I/O and data
movement across diverse HPC applications:
• 3 applications (i.e., AMG2013, MuMMI, iPIC3D)
• 3 adapted tools (i.e., Caliper, Thicket, IOR benchmarking)
• 3 lessons learned (i.e., reveal data movement patterns, align I/O with workflow

execution, use phase-aware monitoring)

We integrate features derived from these lessons learned into a unified
Analytics4X framework that supports diverse application types and I/O patterns

Feature:
Support for fine-grained
I/O layer filtering within

performance profiles

Feature:
Built-in capability to

integrate middleware-
level performance data

into workflow
optimization

Feature:
Automated phase

detection and benchmark-
driven mapping to

optimal storage
configurations

A4X-Orchestration

MPI Orchestrator MaestroPegasus

A4X-Benchmark

Data Movement

MPI POSIX FS DYAD DSpaces

A4X-Core

AMG2013

A4X-Core

MuMMI

A4X-Core

iPIC3D

A4X-Core:
Common abstractions and

built-in performance
monitoring for data

movement tools

A4X-Orchestration:
Common abstractions for

configuring different
workflow management

systems

A4X-Benchmark:
Benchmark comprised of

proxies representing
common data movement

motifs in applications

https://globalcomputing.group

	Slide 1

