Science Simulations Run On Diverse Hardware

ECP apps using RAJA

software tools e |-
== Giinuseet] == . e ==l
=== _ i L“ Fﬂkij - S s e -]
T R s —_—— ECP EanGD e € g |
e J e = (power grid optimization) [e |-
ECP GEOSX ECP sSw4
LLNL ECP/ATDM - rthquak del |
(geomechanics) (earthquake modeling) plus
(hlgh-order ALE hYdrO) others...

RAJA / Umpire / CHAI

| { Perlmutter .

Perimutter (LBL)
AMD Milan CPUs +
NVIDIA Ampere GPUs

Frontier (ORNL) &
El Capitan (LLNL)
AMD CPUs + GPUs

Aurora (ANL)
Intel Xeon CPUs + Xe GPUs

~Astra (SNL)
ARM architecture

Sierra (LLNL)
IBM P9 CPUs + NVIDIA Volta GPUs

Performance portability libraries such as RAJA enable single- source applications
to run across hardware and programming models through architecture
abstractions.

These abstractions shift performance responsibility to the compiler

Developers often struggle to correlate compiler optimization decisions (e.g., apply
inlining, do not vectorization) with runtime performance

The missing link between compiler decisions and runtime behavior makes
performance hard to understand.

101
=.-1010
- =—0101
—000
=:=0M0

Foo

The compiler's middle end emits remarks St [TRl
(diagnostic messages) to report: ST Ll R

* Which optimizations were attempted Absolute Path : /home/foo.cpp
Line: 10

* Which optimizations succeeded Column: 5

: Bar inlined into Foo

« Which optimizations failed with cost(always)

The Problem

1. Too many
remarks

2. No runtime

. context
Source Code Compiler Remarks

Our Contributions

1. We develop a compiler plugin-based methodology that extracts and exposes
compiler optimization information at runtime

2. We conduct a case study to determine the compiler optimization requirements of
RAJA Performance Suite kernels

An Approach for Correlating Compiler Optimizations

with Runtime Performance

Befikir Bogale'! (Student)

Compile with Non-

@ -O[X] Executable
Stream_TRIAD

Olga Pearce?3, Stephanie Brink?, David Boehme?, Ignacio Laguna?, Jason Burmark?, lan Lumsden’, Tom Scogland? (Mentors), Michela Taufer' (Advisor)
University of Tennessee, Knoxville, TN, USA 2Lawrence Livermore National Laboratory, Livermore, CA, USA 3Texas A&M University College Station, TX, USA

N
W

Runtime e
1 1 We Utlllze LLVM paSS = —8— RAJA Seq Default

-~ Base Seq Default

Run Non- Caliper Files :
Instrumented plugins to:

Executable
Remark 1. Extrac;t rgmarks at
Files Run compile time
MSTUAMERTEE 2. Inject remarks into

Executable C |)
omptier runtime output
Optimization

Caliper Files

N
N
1

N
=

Performance trend
convergence

Avg Time/rank (s)
= N
(o) o

=
o
1

Compile with

!_I
~
1

Instrumentation Instrumented

' Executable ' o1 02
Plugm Optimization Level

Attempted Passed Missed

Remark Instrumentation -00 |
Original Code | I .

regalloc|

fOO() { fOO() { * Foo loop-vectorize
bar() <-- inline occured here cali_begin_string("“Inline") . Inline |

bar() <-- inline occured here e liem|

}- } inline . .

LLVM Pass Plugins to Collect Compiler Remarks RAJA Performance Suite Case Study

RAJA and Base implementations of Stream TRIAD at different
Diagnostic Plugin B | oo compiler optimization levels

 RAJA implementation of the kernel is
significantly slower than Base implementation
when using optimization level lower than —O1
Performance trends of the RAJA and Base
implementations converge at —O1 and
higher optimization levels

Key Question:

* Which compiler optimizations are critical for
the RAJA implementation to achieve
performance comparable to the Base

implementation”?

sdagisel
regalloc
loop-vectorize
licm

inline

.Lnt maln() { -Ln-t ma-i_n() { BASE
foo() foo()
} }

—100 -50 0 50 100 100 50 0 50 100 100 50 0 Sg)AJAICO

Attempted Passed Missed

-100 -50 O 50 100 -100 -50 O 50 100 100 50 0 50 100
BASE RAJA BASE RAJA BASE RAJA

Inlining is by the far the

Details about remarks are instrumented at their respective source code locations Passed(110)

Compiler Optimizations and Runtime Performance

Mlicm (11)

x2 x2 —loop-vectorize (5)
—regalloc (1)

Source Code Compiler Executable Caliper Files Thicket

1/ /7 _\ _|
< /|

I AV A 2. Hoisted(14)

Alwaysinlinel(9)[_]

1.238 RAJAPerf e Future Work

L 1.238 Stream —— Loadelim () —

Vectorized (1) —

— 0,205 Stream ADD — loop-unroli1)” issed (36) PartialUnrolled (1) —
— 0.253 Stream_COPY L7~ N

——loop-vectorize'(5)°

9 17 St noT N, S—— Extend methodology to support
| e 'g"""@jﬁ MissedDetails (4) = GPU applications

— 0.254 Stream_MUL rege “iff:;?ﬂﬁ:,’ﬂ{}i: Reduce instrumentation overhead

LoopSpilReloadCories (1) — Enhance our methodology by
LoadWithLooplinvariantAddressinvalidated (1)— aSS|gn|ng Importance faCtorS to

specific optimizations

heavily on inlining for performance

Using Thicket to analyze the optimization information of critical regions

This work was supported by the U.S. National Science Foundation (NSF) under grant numbers #2331152, #2334945, and #2103845. This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 24-SI-005. (LLNL-POST-2009376)

THE UNIVERSITY OF

g § TENNESSEE

KNOXVILLE

most active optimization

 The RAJA

AlwayslInliner(9)C implementation

NoDefinition|(20)

MissedDetails (5)=

needs much more

InstSunk-(2)— inlining

* Auto-inlining

Neverinline (1)— accounted for most of

LoopSplllReIoadCoples (1)— the inlining
| O o TooCosty 11—
=) |.. : —> LoadWithLooplnvariantAddressinvalidated-(1)—

CYAELGCEWEVE

Our methodology allows us to see compiler optimizations applied to kernels along
_ _ with their impact on runtime performance
— 1 We observe that RAJA-based kernels, such as Stream_TRIAD, rely

RAJA matches Base performance trends beyond —O1, primarily due to inlining

References

" A
\/
,‘

N

National Nuclear Security Admln/strat/on

	Slide 1

