Science Simulations Run On Diverse Hardware

ECP apps using RAJA

software tools e |-
== Giinuseet] == . e ==l
=== _ i L“ Fﬂkij - S s e -]
T R s —_—— ECP EanGD e € g |
e J e = (power grid optimization) [ e |-
ECP GEOSX ECP sSw4
LLNL ECP/ATDM - rthquak del |
(geomechanics) (earthquake modeling) plus
(hlgh-order ALE hYdrO) others...

RAJA / Umpire / CHAI

| { Perlmutter .

Perimutter (LBL)
AMD Milan CPUs +
NVIDIA Ampere GPUs

Frontier (ORNL) &
El Capitan (LLNL)
AMD CPUs + GPUs

Aurora (ANL)
Intel Xeon CPUs + Xe GPUs

~Astra (SNL)
ARM architecture

Sierra (LLNL)
IBM P9 CPUs + NVIDIA Volta GPUs

Performance portability libraries such as RAJA enable single- source applications
to run across hardware and programming models through architecture
abstractions.

These abstractions shift performance responsibility to the compiler

Developers often struggle to correlate compiler optimization decisions (e.g., apply
inlining, do not vectorization) with runtime performance

The missing link between compiler decisions and runtime behavior makes
performance hard to understand.
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The compiler's middle end emits remarks St [ TRl
(diagnostic messages) to report: ST Ll R

* Which optimizations were attempted Absolute Path : /home/foo.cpp
Line: 10

* Which optimizations succeeded Column: 5

: Bar inlined into Foo

« Which optimizations failed with cost(always)

The Problem

1. Too many
remarks

2. No runtime

. context
Source Code Compiler Remarks

Our Contributions

1. We develop a compiler plugin-based methodology that extracts and exposes
compiler optimization information at runtime

2. We conduct a case study to determine the compiler optimization requirements of
RAJA Performance Suite kernels

An Approach for Correlating Compiler Optimizations

with Runtime Performance
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LLVM Pass Plugins to Collect Compiler Remarks RAJA Performance Suite Case Study

RAJA and Base implementations of Stream TRIAD at different
Diagnostic Plugin B | oo compiler optimization levels

 RAJA implementation of the kernel is
significantly slower than Base implementation
when using optimization level lower than —O1
Performance trends of the RAJA and Base
implementations converge at —O1 and
higher optimization levels

Key Question:

* Which compiler optimizations are critical for
the RAJA implementation to achieve
performance comparable to the Base

implementation”?
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Using Thicket to analyze the optimization information of critical regions
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Our methodology allows us to see compiler optimizations applied to kernels along
_ _ with their impact on runtime performance
— 1 We observe that RAJA-based kernels, such as Stream_TRIAD, rely

RAJA matches Base performance trends beyond —O1, primarily due to inlining
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