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Science Simulations Run On Diverse Hardware LLVM Pass Plugins to Collect Compiler Remarks RAJA Performance Suite Case Study

• Performance portability libraries like RAJA enable single source applications to 

run on diverse architectures

• Compiler optimizations are critical for performance portability libraries to perform 

well

• Understanding the compiler optimizations attempted, applied, and unsuccessful 

can help developers write more performant code

• Today, it is not trivial for developers to get information about compiler 

optimizations and relate them to the runtime performance applications

Our Solution: Opening the Compiler's Black Box
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RAJA and Base implementations of Stream_TRIAD at different 
compiler optimization levels

• RAJA implementation of the kernel is 

significantly slower than Base implementation 

when using optimization level lower than –O1

• Performance trends of the RAJA and Base 

implementations converge at  –O1 and 

higher optimization levels

Key Question:

• Which compiler optimizations are critical for 

the RAJA implementation to achieve 

performance comparable to the Base 

implementation?

Key Takeaways

• Our methodology allows us to see compiler optimizations applied to kernels along 

with their impact on runtime performance

• We observe that RAJA-based kernels, such as Stream_TRIAD, rely 

heavily on inlining for performance

• RAJA matches Base performance trends beyond –O1, primarily due to inlining
The Problem
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Details about remarks are instrumented at their respective source code locations
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Inlining is by the far the 

most active optimization

• The RAJA 

implementation 

needs much more 

inlining

• Auto-inlining 

accounted for most of 

the inlining
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The compiler’s middle end emits remarks 

(diagnostic messages) to report:

• Which optimizations were attempted

• Which optimizations succeeded

• Which optimizations failed

Our Contributions

Example

1. Too many 

remarks

2. No runtime 

context
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Remark Instrumentation

1. We develop a compiler plugin-based methodology that extracts and exposes 

compiler optimization information at runtime

2. We conduct a case study to determine the compiler optimization requirements of 

RAJA Performance Suite kernels

We utilize LLVM pass 

plugins to:

1. Extract remarks at 

compile time

2. Inject remarks into 

runtime output
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Using Thicket to analyze the optimization information of critical regions

Performance trend 

convergence
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Compiler Optimizations and Runtime Performance

• Performance portability libraries such as RAJA enable single- source applications 

to run across hardware and programming models through architecture 

abstractions. 

• These abstractions shift performance responsibility to the compiler

• Developers often struggle to correlate compiler optimization decisions (e.g., apply 

inlining, do not vectorization) with runtime performance

• The missing link between compiler decisions and runtime behavior makes 

performance hard to understand.
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