
An Approach for Correlating Compiler Optimizations

with Runtime Performance
Befikir Bogale1 (Student)

Olga Pearce2,3, Stephanie Brink2, David Boehme2, Ignacio Laguna2, Jason Burmark2, Ian Lumsden1, Tom Scogland2 (Mentors), Michela Taufer1 (Advisor)
1University of Tennessee, Knoxville, TN, USA 2Lawrence Livermore National Laboratory, Livermore, CA, USA 3Texas A&M University College Station, TX, USA

Science Simulations Run On Diverse Hardware LLVM Pass Plugins to Collect Compiler Remarks RAJA Performance Suite Case Study

• Performance portability libraries like RAJA enable single source applications to

run on diverse architectures

• Compiler optimizations are critical for performance portability libraries to perform

well

• Understanding the compiler optimizations attempted, applied, and unsuccessful

can help developers write more performant code

• Today, it is not trivial for developers to get information about compiler

optimizations and relate them to the runtime performance applications

Our Solution: Opening the Compiler's Black Box

Future Work References

• Extend methodology to support

GPU applications

• Reduce instrumentation overhead

• Enhance our methodology by

assigning importance factors to

specific optimizations

[1] A. Beckingsale et al., “RAJA: Portable Performance for Large-Scale Scientific

Applications”, in Proc. IEEE/ACM Int’l Workshop on Performance, Portability and

Productivity in HPC (P3HPC), Denver, CO, USA, 2019.

[2] D. Boehme et al., “Caliper: Performance Introspection for HPC Software Stacks”, in

Proc. Int’l Conf. for High Performance Computing, Networking, Storage and Analysis

(SC16), Salt Lake City, UT, USA, 2016.

[3] R. Pearce et al., “RAJA Performance Suite: Performance Portability Analysis with

Caliper and Thicket”, in Proc. IEEE/ACM Int’l Workshop on Performance, Portability and

Productivity in HPC (P3HPC), held with Int’l Conf. for High Performance Computing,

Networking, Storage and Analysis (SC-W), Dallas, TX, USA, 2024.

[4] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation”, in Proc. Int’l Symp. on Code Generation and Optimization

(CGO), Palo Alto, CA, USA, 2004.

[5] Lawrence Livermore National Laboratory, “RAJA: Managing Application Portability for

Next-Generation Platforms”, [Online]. Available: https://computing.llnl.gov/projects/raja-

managing-application-portability-next-generation-platforms.

RAJA and Base implementations of Stream_TRIAD at different
compiler optimization levels

• RAJA implementation of the kernel is

significantly slower than Base implementation

when using optimization level lower than –O1

• Performance trends of the RAJA and Base

implementations converge at –O1 and

higher optimization levels

Key Question:

• Which compiler optimizations are critical for

the RAJA implementation to achieve

performance comparable to the Base

implementation?

Key Takeaways

• Our methodology allows us to see compiler optimizations applied to kernels along

with their impact on runtime performance

• We observe that RAJA-based kernels, such as Stream_TRIAD, rely

heavily on inlining for performance

• RAJA matches Base performance trends beyond –O1, primarily due to inlining
The Problem

Original Code Instrumented Code

Details about remarks are instrumented at their respective source code locations

Remark

Legend
Data
Action

Inlining is by the far the

most active optimization

• The RAJA

implementation

needs much more

inlining

• Auto-inlining

accounted for most of

the inlining

This work was supported by the U.S. National Science Foundation (NSF) under grant numbers #2331152, #2334945, and #2103845. This work was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 24-SI-005. (LLNL-POST-2009376)

The compiler’s middle end emits remarks

(diagnostic messages) to report:

• Which optimizations were attempted

• Which optimizations succeeded

• Which optimizations failed

Our Contributions

Example

1. Too many

remarks

2. No runtime

context
Source Code Compiler Remarks

x2

Remark Instrumentation

1. We develop a compiler plugin-based methodology that extracts and exposes

compiler optimization information at runtime

2. We conduct a case study to determine the compiler optimization requirements of

RAJA Performance Suite kernels

We utilize LLVM pass

plugins to:

1. Extract remarks at

compile time

2. Inject remarks into

runtime output

-O1

-O0 -O1

Using Thicket to analyze the optimization information of critical regions

Performance trend

convergence

x2

Source
Code

Remark
Files

Compile with
Diagnostic Plugin

@ -O[X]

Compile with
Instrumentation

Plugin

Run Non-
Instrumented

Executable

Run
Instrumented

Executable

Non-
Instrumented

Executable

Instrumented
Executable

Runtime
Caliper Files

Compiler
Optimization
Caliper Files

Source Code Compiler Caliper Files ThicketUser Executable

Pass Plugins

x999

Compiler Optimizations and Runtime Performance

• Performance portability libraries such as RAJA enable single- source applications

to run across hardware and programming models through architecture

abstractions.

• These abstractions shift performance responsibility to the compiler

• Developers often struggle to correlate compiler optimization decisions (e.g., apply

inlining, do not vectorization) with runtime performance

• The missing link between compiler decisions and runtime behavior makes

performance hard to understand.

	Slide 1

