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Abstract

Bridging portability and scalability is essential for HPC applications.
The Vector Particle-In-Cell (VPIC) code, widely used in plasma
physics simulations, historically required extensive platform-specific
optimizations to achieve high performance. VPIC 2.0 addresses this
challenge by adopting Kokkos for performance portability, enabling
it to scale effectively across diverse architectures, including CPUs
and GPUs. However, the abstractions introduced by Kokkos can
obscure hardware-specific capabilities and introduce performance
overhead. In this work, we mitigate these overheads by enhanc-
ing vectorization and optimizing memory access patterns through
platform-targeted particle sorting in VPIC 2.0. These optimizations
enable VPIC 2.0 to match the performance of the highly tuned,
hardware-specific VPIC 1.2 on CPUs and to achieve superlinear
scaling on GPUs.
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1 Introduction

Ad hoc reengineering of HPC codes for each new hardware plat-
form can deliver high performance, but it is not sustainable due
to the rapid evolution of heterogeneous systems. Frameworks like
Kokkos [22] and RAJA [10] aim to address this challenge by en-
abling code portability. However, they can introduce performance
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overhead and make it harder to exploit hardware-specific char-
acteristics. To overcome these challenges, we ported the Vector
Particle-In-Cell (VPIC) code [3] to GPUs using Kokkos and applied
portable optimizations to the sorting algorithm and vectorization
routines. The original version of the code, VPIC 1.2, was extensively
optimized for CPUs using architecture-specific techniques. In con-
trast, our new version, VPIC 2.0, introduces portable optimizations
based on Kokkos to target both CPUs and GPUs without relying
on hardware-specific rewrites. Our optimizations are applied once
and preserved across platforms, enabling VPIC 2.0 to match the
performance of the original CPU-optimized version while also deliv-
ering high performance on GPUs. Our evaluation shows that VPIC
2.0 scales efficiently across diverse CPU and GPU architectures.
Our work demonstrates that a one-time investment in portable,
performance-aware optimization—enabled by Kokkos—can elimi-
nate the need for repeated ad hoc tuning while retaining scalability.

1.1 Limitations of State-of-the-Art

Several projects highlight solutions for performance portability
overhead. Tools such as Cabana [17] and LLAMA [7] offer better
memory layout control, but do not cover scenarios with changing
dynamic memory access patterns. Portable vectorization libraries
such as VecCore [2] and Vc [12] boost CPU performance, but add
dependencies and require substantial code alterations. These ef-
forts address specific aspects of portability or performance, but fall
short in providing a unified solution that supports dynamic access
patterns, minimizes code disruption, and performs well across both
CPUs and GPUs. This gap motivates our work on VPIC 2.0.

1.2 Our Contributions

To address the limitations of existing solutions, we make the fol-
lowing contributions.

e We pinpoint inefficiencies and bottlenecks in computation
and data movement introduced by performance portability
frameworks’ abstraction layers, which obscure hardware
capabilities.

o We develop strategies to eliminate ad hoc vectorization and
improve memory access patterns with hardware-targeted
sorting while retaining portability.

e We show that our optimizations enable the new VPIC 2.0 to
match the CPU performance of the custom-optimized VPIC
1.2 and excel on GPUs.
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2 Portability Challenges in VPIC

To understand the performance portability challenges in VPIC, we
examine limitations in its legacy implementation and review the
capabilities and constraints of existing portability frameworks.

2.1 Challenges in the VPIC Codebase

We evaluate our performance portability strategy using the Vec-
tor Particle-In-Cell (VPIC) codebase, a production-grade plasma
simulation widely used in scientific computing. VPIC is a high-
performance particle-in-cell (PIC) simulation code designed to
model complex plasma phenomena, including magnetic reconnec-
tion, fusion, solar weather, and laser-plasma interactions. VPIC 1.2
was optimized exclusively for CPU architectures using platform-
specific vector intrinsics to minimize data movement and maximize
performance. Most MPI communication in VPIC is non-blocking
point-to-point with up to six neighbors, allowing it to scale effi-
ciently as more nodes are added. However, achieving and maintain-
ing this scalability required extensive ad hoc reengineering for each
new hardware platform, an increasingly unsustainable approach
given the rapid evolution of heterogeneous computing. For exam-
ple, 57% of the VPIC 1.2 codebase is dedicated to a custom SIMD
library, which must be reengineered whenever new instruction sets
are introduced. Figure 1 shows the distribution of SIMD-related
code lines by platform and vector width. Due to the fixed-length
nature of most instruction sets, significant code duplication occurs
across platforms. Only 11% of the SIMD code implements the actual
physics kernels. This heavy reliance on hardware-specific capabili-
ties presents a substantial engineering burden, particularly when
adding support for new instruction sets such as AVX-512 (non-Xeon
Phi), Scalable Vector Extensions (SVE), and SVE2.
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Figure 1: Breakdown of VPIC 1.2 code by SIMD vector length
and platform. Over 57% of the total VPIC 1.2 code is dedicated
to SIMD support, while only 11% is used to implement the
computational kernels.

2.2 Overview of Portability Frameworks

Performance portability solutions are tools that allow a single
source code to run on multiple platforms. These tools help de-
velopers avoid platform-specific code and ad hoc optimization for
specific machines. Performance portability solutions can be gen-
erally classified as either low-level code generators or high-level
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libraries based on the level of abstraction and whether they use
other tools as a backend.

Low-level tools (such as OpenMP [6], OpenACC [23], OpenCL [14],
HIP [1], SYCL [11], or DPC++ [15]) are often closely integrated
with compilers and generate target-specific code directly. OpenMP
and OpenACC are compiler directives and libraries that enable
the compiler to generate the necessary parallel code automatically.
Developers annotate sections of the code for parallelization with
compiler directives. Additional directives and clauses manage the
data environment, memory management, and GPU offloading. The
compiler then generates code to create and execute the parallel
sections. These annotation-based tools enable parallel execution
with minimal changes to the original serial code, but are heavily re-
liant on the compiler, can be challenging to maximize performance,
and targeting accelerators can make the annotations very complex.
OpenCL and HIP are runtime APIs and kernel languages used to
create portable code. These frameworks are similar to CUDA in how
they are programmed. These solutions can be complex for devel-
opers due to the different programming styles, additional memory
management challenges, and hardware knowledge that is necessary
for high performance. SYCL and DPC++ are programming mod-
els that expose an interface built on standard C++. The developer
writes kernels in standard C++ using parallel execution policies and
portable data structures for parallelizing code. These solutions are
relatively new and are less mature compared with other solutions.

High-level tools (such as Kokkos [22], RAJA [10], OCCA [13],
and Chapel [5]) generally attain portability by mapping code to dif-
ferent backends, such as CUDA, which then generate the necessary
code. Kokkos and RAJA have programming models similar to those
of SYCL, where developers use execution policies and data struc-
tures to parallelize code. Kokkos and RAJA differ in the degree to
which the libraries are tightly coupled. Kokkos keeps the core pro-
gramming model in a single library. RAJA, on the other hand, keeps
execution abstractions, array abstractions, memory management,
and meta-programming capabilities in separate libraries. OCCA
is another framework for creating portable code using a directive-
based kernel language. OCCA is more transparent than Kokkos
and RAJA, as users can examine the translated source code. Chapel
is a language built for parallel programming. Unlike other porta-
bility solutions, parallel programming languages often have more
complex features, such as support for distributed or task-based par-
allelism. These high-level solutions can leverage vendor-optimized
back-ends but introduce more levels of abstraction.

2.3 Extensions and Limitations of Existing
Tools

Several works focus on extending portability frameworks to im-
prove performance in key areas. Some works implement portable
SIMD abstractions [4, 16] to improve compiler-based auto-vectorization.
Abstractions for controlling memory layouts have demonstrated sig-
nificant benefits for HPC applications [9, 18]. The Cabana project
extends the Kokkos framework to apply these optimizations of
memory layout while remaining portable [17]. The LLAMA project
provides abstractions for applying custom memory layouts to more
complex data [7]. However, these tools do not address cases where
memory access patterns change as applications run.
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VPIC 2.0 prioritizes portability across heterogeneous computing
architectures by leveraging Kokkos [22]. However, as computational
resources per node increase, performance becomes more sensitive
to portability-related overhead. Previous work investigated using
mixed precision to improve problem size scalability [19, 20]. To
maintain the performance scalability of VPIC 1.2, VPIC 2.0 must
efficiently scale with GPU capabilities while maximizing vectoriza-
tion.

3 DPortable Optimizations for VPIC 2.0

To address the performance portability challenges introduced above,
we develop novel optimizations in VPIC 2.0 that target two key ar-
eas: compute and data movement. These optimizations are designed
to eliminate the need for ad hoc tuning while ensuring scalable per-
formance across heterogeneous platforms. Specifically, we improve
vectorization strategies to support compute efficiency and intro-
duce hardware-targeted sorting algorithms to optimize memory
access.

3.1 Compute Optimizations: Portable
Vectorization Strategies

Taking full advantage of the computing capabilities of any platform
requires vectorization. The difficulty of vectorization changes based
on the hardware platform and the programming model. GPUs nat-
urally have large amounts of parallelization which can be seen in
the programming model. CUDA and HIP both assume that kernels
will run on many small cores in a SIMD like fashion, making it
easy to vectorize code. CPUs and languages like C++ are designed
primarily for serial execution. The HPC community has built mul-
tiple layers of abstraction (i.e., SIMD intrinsics and SIMD libraries)
and tools (i.e., compiler auto vectorization) to vectorize code with
varying degrees of effectiveness and productivity. Portability layers
introduce another abstraction layer that can inhibit vectorization.
Kokkos relies on compiler auto vectorization for portable SIMD.
Compiler auto vectorization is easily broken by a number of factors
such as branches, math functions, memory layouts, and kernel size.
Additional vectorization strategies are necessary to fully leverage
the hardware and close the gap between the ad hoc optimized VPIC
1.2 and performance portable VPIC 2.0.

We refine vectorization strategies to eliminate the need for ad hoc
vectorization. We leverage compiler auto-vectorization as a baseline
while implementing a guided vectorization strategy that enhances
auto-vectorization using OpenMP SIMD and developer knowledge
without requiring major code restructuring. Furthermore, we refac-
tor the code using the Kokkos SIMD library for manual vectorization
to maximize performance across common CPU architectures sup-
ported by Kokkos SIMD. Manual vectorization requires more effort
than auto or guided but much less than ad hoc vectorization.

3.2 Data Movement Optimizations:
Hardware-Aware Sorting

Efficient memory access patterns are vital for achieving perfor-
mance and vary depending on the hardware platform. Portability
layers hide the differences in memory characteristics from the user
which results in portability overhead for optimizations such as
sorting. VPIC sorts particles according to the cell index to improve
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the memory access pattern. Particle sorting must keep the target
platform in mind to maximize memory efficiency. CPU main mem-
ory has low bandwidth and low latency. Ideally, each thread gets
a different cell and processes all particles in the cell. This allows
the threads to reuse cell-related data and prevents multiple threads
from writing in the same location. The classification of particles
according to the cell index, which we denote as a standard classifi-
cation, ensures the optimal access pattern. GPU-based platforms
require coalesced memory accesses to leverage the high memory
bandwidth and hide the high memory latency. Coalesced memory
accesses occur when successive threads access successive memory.
Particle sorting produces the opposite pattern, with all threads ac-
cessing the same data. Threads accessing the same data prevent
the GPU from hiding memory latency. To achieve portability and
performance scalability, we need hardware-targeted sorting that
produces the optimal order for the platform.

Standard Sort (CPU)
o,0/0/0|1T/1/1}1}/2/22/2]3/3/3/3

Strided Sort (GPU)
ofrf2fsfof1]2]3o[1]2]3]0]1]2]3

Tiled Strided Sort (GPU)
Lof1]of1]ofr]of1]2]a[2]s]2]3]2]3]

Figure 2: Example of different sorting algorithms.

3.2.1 Strided Sort. We create a different sorting algorithm that
produces repeating and strictly monotonically increasing sequences.
Our algorithm is listed in Algorithm 1 and an example is shown
in Figure 2. First, we create a copy of the keys and identify the
minimum and maximum keys. Second, we initialize a histogram to
track the number of instances of each key. Third, we iterate through
each key, add the current histogram count for the key multiplied
by the maximum key, and update the histogram. Finally we sort
the values using the new keys. This algorithm, which we denote as
strided sort, produces coalesced memory access patterns.

3.2.2 Tiled Strided Sort. Our tiled strided sort algorithm builds on
strided sort by reducing the amount of data read from main memory.
Strided sort produces coalesced memory access patterns, but also
requires reading the data multiple times. With tiled strided sort we
produce repeating tiles where indices within each tile follow strided
sort. Our algorithm is listed in Algorithm 2 with an example in
Figure 2. This pattern allows the GPU to read the coalesced data and
reuse them, increasing the arithmetic intensity and performance of
the application.

4 Implementation of Portable Optimization

To realize the portable optimizations described in the previous sec-
tion, we implement vectorization and sorting strategies in VPIC
2.0 using the Kokkos portability framework. Our implementation
approach begins with the setup of the software environment and is
followed by details of our compute and data movement optimiza-
tions.
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4.1 Framework and Environment

We leverage the Kokkos performance portability framework for im-
plementing our gather-scatter benchmarks and VPIC 2.0. Kokkos [21,
22] is a suite of libraries and abstractions to develop high perfor-
mance C++ applications that are portable across many platforms,
including all major CPUs and GPUs. Kokkos achieves high perfor-
mance and portability by mapping its own programming model to
various native backends such as OpenMP, CUDA, and HIP. This
allows Kokkos to take advantage of the work done on optimizing
the backend code generation and focus on mapping the model and
library features for rapid development. Toolchain maturity and soft-
ware environments still have limitations that can inhibit portability
solutions. For our performance portability study, we use Kokkos
4.6.01 built with GCC and OpenMPI to provide a neutral environ-
ment across all platforms. On x86_64 platforms, we use GCC 12.2.0
and OpenMPI 4.1.5 while on ARM platforms, we use GCC 12.1.0
and OpenMPT 4.1.4. We use CUDA 12.3.1 and ROCm 6.4.1 for the
Nvidia and AMD GPU platforms respectfully. For the Nvidia Grace
CPU and Grace Hopper superchips we use NVHPC 25.1 because of
the lack of support for the Grace architecture in GCC 12. The Grace
CPU and A64FX ARM platforms have more toolchain limitations
than the x86_64 CPUs due to having less mature compiler support
and Kokkos 4.6.01 not supporting SVE or SVE2 vector instructions.

4.2 Implementation of Vectorization Strategies

We implement the four vectorization strategies using the Kokkos
abstractions for vectorization loops and SIMD along with a custom
SIMD library used by VPIC 1.2. The auto vectorization strategy uses
the hierarchical parallelism mechanisms provided by Kokkos. In-
ternally, the loops are marked with #pragma ivdep to inform the
compiler that there are no loop-carried dependencies. The compiler
uses heuristics and code analysis to vectorize the code. Our guided
vectorization replaces #pragma ivdep with #pragma omp simd to
force the compiler to vectorize the loop. The compiler may not vec-
torize the code if it cannot guarantee the correctness or is incapable
of generating vectorized code. Additional changes, such as splitting
kernels to separate difficult-to-vectorize mathematical functions,
are also applied. We use the KokkosSIMD library for manual vector-
ization. The library is an implementation of the C++26 SIMD library.
The library covers most common SIMD operations and includes
SIMD masks for handling branches. The library supports AVX2,
AVX512, and Neon instruction sets. We also implement functions
for transposing data in registers. These functions help accelerate
data loading and storing in VPIC and require much less instruction
set specific code than the ad hoc vectorization strategy. The ad hoc
vectorization strategy uses the custom SIMD library in VPIC 1.2
for vectorization. The library uses intrinsics and supports the AVX,
AVX2, AVX512 (Xeon Phi only), Neon, and Altivec instruction sets.

4.3 Implementation of Hardware-Aware Sorting

We implement two sorting functions that change the order of the
final sorted array. Both sorting functions create and modify a copy
of the keys to generate the desired final order. The adjustment of
the keys is O(N). Once the new keys are generated, we use the
parallel sort_by_key function provided by Kokkos for sorting the
keys and values.
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Algorithm 1 Strided Sort.

Input: Keys, Values
1: new_keys < Keys
: (maxy, ming) «— MINMAX (new_keys)
: key_counts « Histogram(maxy — miny + 1)
: for all key € new_keys do in parallel
i = atomic_fetch_add(key_counts(key — ming), 1)
key = (key — ming) + i * (maxy + 1)
: end for
: SORT_BY_KEY (new_keys, Keys)
: SORT_BY_KEY (new_keys, Values)

N I U SR N

Algorithm 2 Tiled Strided Sort.

Input: Keys, Values, TileSz
1: new_keys « Keys
: (maxy, ming) «— MINMAX (new_keys)
: key_counts « Histogram(maxy — miny + 1)
: for all key € new_keys do in parallel
atomic_inc(key_counts(key — ming))
: end for
: max, < MAX(key_counts)
: chunk_sz « TileSz * max,
: RESET (key_counts)
: for all i € len(Keys) do in parallel
id = Keys(i) — miny,
tile = atomic_fetch_add(key_counts(id, 1)
chunk = Keys(i)/TileSz
new_keys(i) = chunk  chunk_sz + tile = TileSz + id
: end for
: SORT_BY_KEY (new_keys, Keys)
: SORT_BY_KEY (new_keys, Values)

O N U Wy

e e
B e Y N T =

4.3.1 Strided Sort. Our strided sort pseudocode is shown in Algo-
rithm 1. A copy of the keys is made and the minimum and maximum
keys are found. We initialize a View key_counts to track the num-
ber of duplicates for each unique key. Finally, we iterate over all
keys in parallel and update each key by adding an offset based on
the maximum key value and the number of times the key has been
seen. This ensures that the final keys are sorted such that the key
View is split into one or more strictly monotonically increasing
subsets.

4.3.2 Tiled Strided Sort. Our algorithm tiled strided sort builds on
strided sort by splitting the data into tiles and applying strided sort
to each tile. Keys are split into chunks and each chunk contains one
or more repeating tiles where all keys in each tile are in strided sort
order. Similarly to strided sort, we start by finding the minimum and
maximum keys and setting up a View for counting repeated keys.
Next, the maximum number of repeated keys is found to determine
how many tiles are in each chunk. The counting View is reset to
zeros. For each key, we atomically fetch and update key_counts to
get the tile ID, determine the chunk in which the key belongs, and
update the new key with the chunk and tile offset.
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5 Performance Portability Evaluation

We evaluate these optimizations on a diverse set of CPU and GPU
architectures to assess both performance portability and scalability.

5.1 Heterogeneous System Configurations

We evaluate portability and scalability across four robust comput-
ing systems: Darwin at LANL, Selene at Nvidia, plus Sierra and
Tuolumne at LLNL. Darwin at Los Alamos provides a wider mix
of x86_64, ARM, and GPU architectures than typical clusters. Our
testing utilizes Intel Xeon Max 9480, Xeon Platinum 8480, EPYC
7763, A64FX, and Grace CPUs, alongside Nvidia A100, H100, AMD
MI100, and MI250 GPUs. Selene, Nvidia’s DGX SuperPod, offers
79 petaflops with nodes comprising two 64-core AMD EPYC 7742
CPUs, 2 TB DRAM, and eight 80 GB NVIDIA A100 GPUs. Sierra, a
125-petaflop machine at Lawrence Livermore, is built on IBM Power
Systems AC922, with 4,320 nodes featuring dual 22-core Power9
CPUs, 256 GB RAM, and four 16 GB NVIDIA V100 GPUs. Tuolumne,
a 288-petaflop system at Lawrence Livermore, akin to El Capitan,
has 1,152 nodes equipped with four AMD MI300A APUs (24 CPU
cores plus a GPU, 128 GB of HBM3). Table 1 provides a summary
of the hardware architectures, memory capacities, and capabilities
of the systems. The values highlight the architectural diversity (i.e.,
x86_64, ARM, and GPU accelerators with DDR4, DDR5, HBM2, and
HBM3 memory) used in our portability and scalability evaluation.

Table 1: CPU and GPU specifications for the four test sys-
tems, including core counts, memory type/capacity, last-level
cache, and STREAM Triad bandwidth.

Platform Core Main | Last Level | Main Memory
ato count | Memory Cache Bandwidth
32 GB .
A64FX 48 HBM 4*8MB 424 GB/s
EPYC 7763 . 512 GB
(Zen 3) 2764 DDR4 256 MB 165 GB/s
Platinum 8480 . 256 GB
(SPR DDR) 2756 DDR5 105 MB 96.77 GB/s
Xeon Max 9480 . 128 GB
(SPR HBM) 2756 DDR5 105 MB 266.05 GB/s
Grace 272 | 480 GB 114 MB 390 GB/s
MI300A (CPU) 24 128 GB 256 MB 202.18 GB/s
V100S 5120 32 GB 6 MB 886.4 GB/s
A100 6912 80 GB 40 MB 1,682 GB/s
H100 16896 96 GB 50 MB 3,713 GB/s
MI100 7680 32 GB 8 MB 970.9 GB/s
MI250 13312 | 128 GB 16 MB 2,498 GB/s
MI300A (GPU) | 14592 | 128 GB 256 MB 3,254 GB/s

5.2 Evaluation Methodology

We evaluate how each optimization impacts the performance and
scalability of VPIC 2.0 by defining clear metrics (runtime, band-
width, and resource utilization), varying key testing parameters
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(CPU types, key patterns, and GPU counts), and organizing experi-
ments into three classes (vectorization, sorting, and scalability).

5.2.1 Performance Metrics.
¢ Runtime Execution time for the particle push kernel and
the full simulation.
e Bandwidth Memory bandwidth in gather—scatter bench-
marks to assess data movement efficiency.
e Resource Utilization Comparison of compute intensity
achieved (FLOPs) with arithmetic intensity (FLOPs / byte).

5.2.2  Parameters Varied.

e Chip Configurations A range of x86_64 and ARM CPUs
to evaluate vectorization portability.

o Key Patterns Contiguous and repeating gather—scatter pat-
terns for sorting performance studies.

e Number of GPUs Strong scaling from 1 to 512 GPUs.

5.2.3 Experiment Classes.

e Vectorization Impact of vectorization strategies on CPUs,
using microbenchmarks and the particle push kernel.

e Hardware-Targeted Sorting Performance effects on gather—scatter

patterns, stencils, and the particle push kernel.
o Scalability Exploration of new super-linear strong scaling
opportunities in VPIC 2.0.

5.3 Vectorization Evaluation

To understand the impact of different vectorization strategies on
performance portability, we first apply the auto, guided, and man-
ual vectorization strategies to three kernels derived from the RA-
JAPerf microbenchmark suite. The AXPY kernel represents the
simplest SIMD code without mathematical functions or branching.
The PLANCKIAN kernel models calculations involving Planck’s
law and uses the exponential function, which may hinder compiler
vectorization. The third kernel, PI_REDUCE, approximates 7 in
parallel with a reduction across all samples.

Figure 3 shows runtime normalized to auto vectorization. For
most platforms, AXPY performs similarly across all strategies, in-
dicating that compilers handle very simple kernels well. Manual
vectorization is nearly twice as slow on A64FX due to the lack of
Kokkos SIMD support for 512-bit SVE instructions. Grace, which
uses 4x128-bit SIMD units, benefits more from manual vectorization
despite also using SVE/SVE2 due to the SIMD units better align-
ing with the 128-bit NEON instruction set. PLANCKIAN gains up
to 20% from guided vectorization, while PI_REDUCE reveals how
common operations can inhibit vectorization; manual vectorization
is up to 80% faster than auto and guided on non-MI300A CPUs.

We next evaluate auto, guided, manual, and ad hoc vectorization
strategies on the particle push kernel in VPIC (Figure 4). We run
the tests on Darwin using the laser—plasma instability benchmark,
with the A64FX using two separate nodes instead of dual-socket
configurations. The particle push kernel is significantly more com-
plex than the RAJAPerf kernels, involving complex memory access
patterns, common math functions, and branch divergence.
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Figure 3: Normalize runtime comparison of auto, guided, and manual vectorization strategies across CPU architectures for
three RAJAPerf kernels (AXPY, PLANCKIAN, and PI_REDUCE). Runtimes are normalized to the auto vectorization baseline.
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Figure 4: Runtime comparison of auto, guided, manual, and
ad hoc vectorization for the VPIC particle push kernel across
CPU architectures. Results are from the laser—plasma insta-
bility benchmark run on the Darwin testbed.

Guided and manual vectorization consistently outperform auto
vectorization, with guided achieving competitive performance on
all platforms and manual matching VPIC 1.2 on x86_64 CPUs.
Guided vectorization is up to 83% faster on the MI300A and 25-55%
faster on other platforms. Greater gains on A64FX and Grace are
limited by the lack of SVE/SVE2 support in manual/ad hoc strate-
gies. Moving from DDR to HBM (SPR DDR vs. SPR HBM) improves
manual/ad hoc performance because compilers cannot easily gen-
erate the optimized load/store code. The complexity of the particle
push kernel amplifies the vectorization benefits observed in the
microbenchmarks.

5.4 Sorting Evaluation

To evaluate the importance of hardware-targeted sorting for con-
trolling memory access patterns, we develop a microbenchmark for
gather—scatter patterns common in hash tables, stencils, and parti-
cle methods. The benchmark processes one billion double-precision

numbers using three key patterns: contiguous keys with unique
keys in sorted order representing the ideal case with fully coalesced
accesses; repeated keys with 10 million unique keys, each repeated
100 times, introducing high atomic contention; and a 5-point sten-
cil access pattern as used in the VPIC particle push kernel. Test
sizes are set to guarantee test data is large enough that it cannot
fit in cache. Memory bandwidth is calculated based on the total
amount of data movement for each kernel divided by the measured
runtime. We test three sorting algorithms (i.e., standard, strided,
and tiled-stride) on multiple CPU and GPU platforms. Tile sizes
match the number of CPU threads or three times the number of
GPU cores. The same sorting variants are applied to the full VPIC
particle push kernel, which includes a gather phase, atomic scatter
phase, and additional physics computations.

On CPUgs, the results in Figure 5 show that with contiguous
keys (Figure 5a), sorting has minimal effect because accesses are
already coalesced. GPUs and high-bandwidth CPUs such as A64FX
and SPR HBM sustain near-peak STREAM bandwidth, but SPR
DDR underperforms due to problem-size sensitivity. When keys
are repeated (Figure 5b), bandwidth drops by nearly two orders of
magnitude on all CPUs, with a more severe drop for HBM-based
platforms. Strided sorting often matches or underperforms standard
sort, whereas tiled-strided improves cache utilization and reduces
atomic serialization. In the stencil case (Figure 5¢), patterns resem-
ble the repeated keys case but with more irregular accesses and
lower bandwidth. Tiled-strided generally performs best, though
performance gaps widen for architectures such as A64FX that are
more sensitive to complex memory access patterns.

On GPUs, the results in Figure 6 indicate that for contiguous
keys (Figure 6a), all sorting algorithms perform identically since
accesses are already optimal. With repeated keys (Figure 6b), stan-
dard sort suffers from high memory latency and atomic conflicts,
especially on V100, MI100, and MI250. Strided and tiled-strided
restore coalescing, with tiled-strided nearly doubling bandwidth
on the A100 and H100. Vendor differences emerge in that on AMD
GPUs, strided sometimes outperforms tiled-strided. In the stencil
case (Figure 6c), both strided and tiled-strided improve over stan-
dard sort, but the benefits are smaller because irregular accesses
still require multiple data reads.
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Figure 7: Impact of different sorting orders on the VPIC par-
ticle push kernel across four GPU architectures.

Applying these sorting algorithms to the full VPIC particle push
kernel (Figure 7) shows that on NVIDIA GPUs, strided sort is more
than two times faster than standard sort, and tiled-strided nearly
doubles the performance of strided. On AMD GPUs, random and
standard sorts are over an order of magnitude slower than strided
or tiled-strided. Vendor-specific cache and memory differences play
a key role, highlighting that hardware abstraction layers can hide
important tuning opportunities.

Runtime metrics alone do not indicate whether the hardware
is being fully utilized. To assess utilization, we perform roofline
analyses using nsight-compute and rocprof-compute profilers (Fig-
ure 8). On the H100, standard sort shows high arithmetic intensity
(3.58) but poor utilization (1% of peak FP32). Strided sort improves
utilization but lowers intensity (1.18). The tiled strided sort matches
the intensity of the standard sort (3.59) while improving utilization,
increasing throughput from 550 GFlop/s to 6.51 TFlop/s, an 11.8x
improvement. On the MI250 (single GCD), strided and tiled-strided
improve utilization over standard sort, though less dramatically
than on the H100. The tiled strided sort changes the arithmetic
intensity from 16.9 to 4.47 FLOP/byte and boosts throughput from
38.8 GFlop/s to 800 GFlop/s, a 20.6x improvement. The MI300A
behaves differently, with all ing methods having low arithmetic
intensity (< 1.0) and being memory-bandwidth bound. Standard
(0.51), strided (0.65), and tiled-strided (0.85) all show unexpectedly
low compute utilization, indicating additional portability overheads
and hardware-specific effects that limit performance.

These results confirm that the choice of sorting strategy must
be tuned to each architecture to maximize both bandwidth and
computational throughput, especially when targeting performance
portability across heterogeneous systems. Performance anomalies
in Figure 8c show that there is more opportunities to improve
memory access patterns in future work.

5.5 Scalability and Cache Effects

Modern GPUs with larger caches (e.g., A100, H100, MI300A) enable
the possibility of storing the entire VPIC grid in cache, eliminating
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the need for particle sorting and allowing super-linear speedup in
strong scaling. In VPIC 2.0, particle sorting minimizes the number
of grid points updated at once so that they remain in the cache.
If the entire grid fits in cache, sorting overhead can be avoided
altogether.
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Figure 9: Number of particle pushes per nanosecond as a
function of grid size on Sierra with V100 and Selene with
A100. The total number of particles is held constant and only
particle push time is included.

We repeat the laser—plasma interaction benchmark from the
sorting tests, but with particle sorting disabled, using Sierra (V100),
Selene (A100), and Tuolumne (MI300A). The particle count is fixed,
while the grid size varies. Figure 9 shows the particle pushes per
nanosecond versus the grid size. Each GPU exhibits a sharp perfor-
mance peak: V100 reaches ~4 pushes/ns at 13,824 grid points, A100
reaches ~6 pushes/ns at 85,184, and MI300A reaches ~9 pushes/ns
at 39,304. For the A100, the peak grid size is about 6x that of the
V100, matching its cache increase. The performance boost for the
A100, compared to the V100, aligns with an approximately sixfold
increase in grid points, mirroring the cache growth. If this rise is
due to cache effects, subsequent strong scaling tests should exhibit
super-linear speedup. We hypothesize that the A100’s performance
decrease with very few grid points (resulting in very high particles
per cell) is an effect of colliding writes during current deposition.
The MI300A architecture is distinctly different from the V100 and
A100 GPUs and features a significantly larger cache, complicating
predictions about the influence of cache size on the data. Although
there is a rare decrease in performance to below six particle pushes
per ns, this is an anomaly.

Carefully selecting the size of our grid to match the peak perfor-
mance in Figure 9, we run strong scaling tests on Sierra with V100
GPUs (i.e., from 1 to 32 GPUs), as shown in Figure 10a, on Selene
with A100 GPUs (i.e., from 8 to 512 GPUs), as shown in Figure 10b,
and on Tuolumne with MI300A GPUs (i.e., from 1 to 64 GPUs). As
suggested by Figure 9, we do indeed observe super-linear scaling
on all three platforms.
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systems.
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Figure 10a presents the strong scaling performance of VPIC
2.0 on the Sierra supercomputer using NVIDIA V100 GPUs. As the
number of GPUs increases, more of the computational grid is kept in
cache, leading to superlinear speedup up to a point. The superlinear
speedup observed in this scaling test highlights the effectiveness
of caching strategies in maximizing performance. We observe a
25x speedup for an 8x increase of GPUs, from 1 to 8. Beyond 8, the
GPUs are very empty, and communication overhead starts to cancel
out the super-linear speedup, revealing a key scalability limitation.

Figure 10b presents the strong scaling results on the Selene
supercomputer with A100 GPUs. This result shows that newer GPU
architectures with larger caches can sustain superlinear scaling for
a larger range of GPU counts before communication overhead
dominates. On Selene, we see a 19x speedup for an 8x increase
of GPUs, from 8 to 64. Unlike the V100, we see near-ideal scaling
all the way to 512 GPUs, the largest allocation we were able to
test. It validates the effectiveness of smart caching strategies in
enabling scalable GPU performance. Recent advances in GPU-GPU
communication and growing cache sizes continue to make the
superlinear strong scaling case more practical.

Figure 10c shows that the superlinear strong scaling behavior
applies to AMD as well as Nvidia GPUs. Superlinear scaling is
maintained on up to 256 GPUs even as communication costs grow.
We see a 90.5x speedup for a 64x increase in GPUs. Improvements
in shared-memory and cache utilization can further improve the
strong scalability on the MI300A. The 256 MB of last level cache
in the MI300A can fit more than 3.5 million grid points, allowing
more problems to take advantage of the superlinear strong scal-
ing behavior. Additional features like GPU-aware MPI will reduce
the communication overhead for exchanging particles and enable
greater superlinear scaling in the future.

6 Scientific Impacts

VPIC transforms computational plasma physics by enhancing per-
formance scalability and portability. It allows high-fidelity simu-
lations of phenomena such as magnetic reconnection and fusion
across various hardware setups. Furthermore, VPIC’s vectorization
and memory strategies are broadly applicable in fluid dynamics,
astrophysics, and gahter scatter patterns in general. It exhibits scal-
ability on large supercomputers, making VPIC a promising choice
for exascale computing, where efficient resource use is paramount.
VPIC 2.0 enables longer simulations for greater insights into plasma
behavior, advanced diagnostics that can be run in the timestep for
more accurate analysis and insights in plasma modeling [8], and
multiple runs of previously expensive simulations for stochastic
analysis and generation of AI/ML training datasets. Such capabil-
ities can accelerate scientific discovery and open up avenues of
study that were previously intractable. The superlinear strong scal-
ing behavior is a promising optimization for running large batches
of smaller simulations. Such simulations can be used as training
datasets for upscaling the resolution of plasma simulations or cre-
ating fast models to guide other simulations.

7 Conclusions

Our key contribution is optimizing VPIC 2.0 to achieve performance
portability and scalability across heterogeneous architectures. Our
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vectorization strategies ensure that VPIC 2.0 attains performance
parity with the ad hoc optimized VPIC 1.2 on CPU platforms. We
optimize particle sorting by adapting the sorting order to the tar-
get hardware, significantly enhancing particle push performance
on GPUs with improvements of up to 37x faster than using the
standard sorting order on GPUs. To explore the new scalability
capabilities made available, we implement caching strategies that
store grid data in the shared cache of the GPU, enabling strong
superlinear scaling. These optimizations collectively allow VPIC
2.0 not only to match but also to exceed the scalability of VPIC 1.2,
unlocking new opportunities for high-fidelity plasma simulations
and broader scientific discovery.
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