PRIONN: Predicting Runtime and IO using Neural Networks

Michael R. Wyatt, Stephen Herbein, Todd Gamblin, Adam Moody, Dong H. Ahn, and Michela Taufer

Acknowledgements

Stephen Herbein

Todd Gamblin

Adam Moody

Dong H. Ahn

Michela Taufer

HPC Batch Job Scheduling

HPC Batch Job Scheduling (Future)

Persuing Job Resource Knowledge

Resource Usage Prediction

PRIONN: From Job Scripts to Predictions

- We want an automatic, general, and accurate tool for resource prediction
 - Automatic: avoid development and maintenance of parsers
 - General: works with any type of job script
 - Accurate: better prediction accuracy than other ML methods

PRIONN: Learning From Entire Job Scripts

- We convert job scripts to image-like representations
- Text is mapped to vectors

Job Script

Image-like Representation

PRIONN: Job Script to Image

- We test several character embedding methods
- Word2Vec gave best predictive accuracy

PRIONN: From Job Scripts to Predictions

 We leverage the power of CNNs to learn and predict from our image-like job script representation

PRIONN Training and Prediction

We continuously retrain PRIONN with the most recent system data

Per-Job Runtime and I/O Predictions

Enabling IO-Aware Scheduling

- 1. Advance per-job runtime knowledge
- 2. Advance per-job IO usage knowledge
- 3. Feed runtime and IO usage to system simulation to model future system IO

Future System IO Prediction

[1] D. Ahn, et al. Flux: A Next-Generation Resource Management Framework for Large HPC Centers (ICPP'14)

[2] S. Herbein, et al. Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters (HPDC'16)

Evaluating IO Burst Predictions

- We compare our predicted and real system IO
- A correct IO burst prediction falls within the anticipation window for the real IO burst
- We tally TP, FP, TN, and FN
 IO burst predictions

Evaluating IO Burst Predictions

Precision and sensitivity of anticipating IO burst given a window size in minutes

70% of anticipated bursts occur

55% of bursts are anticipated

Precision =
$$\frac{TP}{TP + FP}$$
 (How many predicted IO bursts occur?)

Sensitivity =
$$\frac{TP}{TP + FN}$$
 (How many IO bursts are predicted?)

100% Precision Sensitivity 80% 60% Score (9 40% Small anticipation 20% windows are better 0% Window Size (minutes)

Based on: https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

HPC Batch Job Scheduling (Future)

Lessons Learned

- Next-generation HPC systems will require IO-aware batch schedulers
- PRIONN is a resource prediction tool for IO-aware schedulers
 - Per-job runtime and IO usage predictions with >75% mean, >95% median accuracy
 - We forecast >55% of system IO bursts before they occur
- PRIONN uses deep learning and does not require job script parsing
 - Can be quickly deployed on many systems
 - Can be used with any job scripts
 - Accurate for resource usage prediction

