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Non-Determinism and Correctness in HPC

• HPC Community Position: “Non-determinism control” and 
“anomaly detection” identified in DOE report on the 2017 HPC 
Correctness Summit as key challenges in bug detection and 
localization [1]

• Our Position: 
§ These challenges go hand-in-hand. 
§ Detecting when and how they act non-deterministically 

in unexpected ways is critical!

1. Gopalakrishnan, G., Hovland, P.D., Iancu, C., Krishnamoorthy, S., Laguna, I., Lethin, R.A., Sen, K., Siegel, S.F. and Solar-Lezama, A., 2017. 
Report of the HPC Correctness Summit, Jan 25--26, 2017, Washington, DC. arXiv preprint arXiv:1705.07478. See section 3.2.4, 3.2.5 1
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Impacts of Non-Determinism on Scientific Outcomes

(a) (b)

Figure 1: We show the result of two Enzo cosmological simulations with identical initial conditions and
simulation properties in the two panels. The galaxy gas density is projected onto the x-y plane. The white
circles indicate detected galactic halos, representing the size (and mass) of each halo. Note for example that
halo 49 exists in Figure 1a, and is missing in Figure 1b. This is because minute numerical variations have
a↵ected the history of the second simulation to the point that the mass clump where halo 49 should be never
became gravitationally bound and hence detectable by the rockstar algorithm. Also note the distances and
positions of several of the galaxies are subtly di↵erent in the two panels. Close inspection of some of the
halos will also reveal di↵erent orientations in the two simulations.

(a) Mass distribution of the largest galaxy (b) X position distribution of the largest galaxy

Figure 2: The two panels show the variability of properties of the largest galaxy from 200 Enzo cosmology
simulations. These simulations were performed using the gcc compiler version 6.2.0 with ‘high’ category
optimizations (‘-O2’). The mass of this galaxy can vary by as much as 0.5% of the mean value.
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1. Stodden, V. and Krafczyk, M.S., 2018. Assessing Reproducibility: An Astrophysical Example of Computational Uncertainty in the HPC Context.

Run where galactic halo was detected Run where galactic halo was not detected
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a = 109, b = �109, c = 10�9

Summation order 1
(a+ b) + c = (109 � 109) + 10�9 = 10�9

Summation order 2
a+ (b+ c) = 109 + (�109 + 10�9) = 0

1

Interaction Between Non-Associativity and Non-Determinism
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Impacts of Non-Determinism on Correctness
Example 1:
• Rounding difference between Xeon CPU and 

Xeon Phi caused message count to differ on 
CPU code vs. accelerator code [1]

• Message count difference induced deadlock

Example 2:
• A non-deterministic bug in 

Diablo/HYPRE 2.10.1 [2]
• Application hung after several hours, 

in approximately 1/50 runs
• Cost of debugging effort:

• 18 months of scientists’ time
• 9560 node-hours

Expecting 62
messages

Sends 63 messages 
DEADLOCK
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Wasted Useful

Equal to wasting 
400 nodes for 
24 hours 

1. Gopalakrishnan, G., Hovland, P.D., Iancu, C., Krishnamoorthy, S., Laguna, I., Lethin, R.A., Sen, K., Siegel, S.F. and Solar-Lezama, A., 2017. Report of the HPC Correctness Summit, Jan 25--26, 2017, Washington, DC. arXiv preprint arXiv:1705.07478.
2. Sato, K., Ahn, D.H., Laguna, I., Lee, G.L., Schulz, M. and Chambreau, C.M., 2017, January. Noise injection techniques to expose subtle and unintended message races. In ACM SIGPLAN Notices (Vol. 52, No. 8, pp. 89-101). ACM. 4



Summary of Challenges

• HPC applications involve the interaction between:
§ Floating-point non-associativity
§ Communication non-determinism

• Impacts can range from program incorrectness
to irreproducibility scientific outputs

• Mitigation strategies exist, but can be costly, limited in scope, 
and fail to address a key need: 
linking observable non-determinism to its root causes 
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Our Approach

• Need to link observations of potentially harmful non-
determinism to potential root causes

• Need to distinguish between anomalous non-deterministic 
application behaviors and expected ones

• Need a metric for execution similarity
• Need a model of executions that supports such a metric
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Workflow for Non-Determinism Characterization

• Phase 1: Build graph-structured models of executions
• Phase 2: Quantify cross-execution trends in non-deterministic 

communication via graph similarity
• Phase 3: Detect periods of anomalous execution dissimilarity 

and localize potential root causes
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Workflow for Non-Determinism Characterization

• Phase 1: Build graph-structured models of executions
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From Traces to Event Graphs

• We trace a non-deterministic application multiple times, capturing a record of 
communication events

1. Rodrigues, A.F., Voskuilen, G.R., Hammond, S.D. and Hemmert, K.S., 2016. Structural Simulation Toolkit (SST) (No. SAND2016-3693PE). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
2. https://github.com/sstsimulator/sst-dumpi

Tracing Library
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From Traces to Event Graphs

• We trace a non-deterministic application multiple times, capturing a record of 
communication events

• We convert the set of trace files to a graph-structured model of the inter-process 
communication that occurred during the execution—i.e., the event graph [3]

1. Rodrigues, A.F., Voskuilen, G.R., Hammond, S.D. and Hemmert, K.S., 2016. Structural Simulation Toolkit (SST) (No. SAND2016-3693PE). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
2. https://github.com/sstsimulator/sst-dumpi
3. Kranzlmüller, D., 2000. Event graph analysis for debugging massively parallel programs.

Tracing Library
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Event Graph Structure
• Directed, acyclic graph (DAG) representing a 

message-passing program execution [1]

1. Kranzlmüller, D., 2000. Event graph analysis for debugging massively parallel programs. 10

P1

P0



Event Graph Structure

Receive Event

Send Event

Barrier Events

• Directed, acyclic graph (DAG) representing a 
message-passing program execution [1]

• Vertices represent communication events
(e.g., message sends, receives, and barriers)

1. Kranzlmüller, D., 2000. Event graph analysis for debugging massively parallel programs. 10
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Event Graph Structure

Receive Event

Send Event

Barrier Events

P1

P0

• Directed, acyclic graph (DAG) representing a 
message-passing program execution [1]

• Vertices represent communication events
(e.g., message sends, receives, and barriers)

• Edges represent “happens-before”[2] 
relationship between events

1. Kranzlmüller, D., 2000. Event graph analysis for debugging massively parallel programs.
2. Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7), pp.558-565.
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Event Graph Vertex Labels

Send Event

Receive Event

Event Type: Receive
Process ID: 0
Wall Time: 3.1745455 (s)

Event Type: Send
Process ID: 1
Wall Time: 2.12323 (s)
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Event Graph Vertex Labels

Send Event

Receive Event

Event Type: Receive
Process ID: 0
Wall Time: 3.1745455 (s)
Call-Stack: main à do_comm à non_det_recv à MPI_Recv

Event Type: Send
Process ID: 1
Wall Time: 2.12323 (s)
Call-Stack: main à do_comm à non_det_send à MPI_Send
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Event Graph Vertex Labels

Send Event

Receive Event

Event Type: Receive
Process ID: 0
Wall Time: 3.1745455 (s)
Call-Stack: main à do_comm à non_det_recv à MPI_Recv

Event Type: Send
Process ID: 1
Wall Time: 2.12323 (s)
Call-Stack: main à do_comm à non_det_send à MPI_Send

Call-stack labels link run-time 
non-determinism to root causes 
in source code 
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Summary of Event Graph Model

• Traces of MPI application → DAG
• Vertices → communication events
• Edges → happens-before orders
• Vertex Labels:

§ Event type → What happened?
§ Process ID → In which process did it happen?
§ Timestamp → When did it happen?
§ Call-Stack → Where in the code did it come from? 

12



Workflow for Non-Determinism Characterization

• Phase 2: Quantify cross-execution trends in non-deterministic 
communication via graph similarity

13
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Intuition: K counts matching substructures
• Matches between G and G’ increase score
• Differences do not
• Graph kernel K induces a metric → the graph kernel distance [1]
• Formula: D i j = 𝐾 𝑖 𝑖 + 𝐾 𝑗 𝑗 − 2𝐾 𝑖 𝑗
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Graph Similarity via Graph Kernels

Similarity 
Score

Intuition: K counts matching substructures
• Matches between G and G’ increase score
• Differences do not
• Graph kernel K induces a metric → the graph kernel distance [1]

Formula: D(G, G′) = 𝐾 𝐺, 𝐺2 + 𝐾(𝐺, 𝐺′) − 2𝐾(𝐺, 𝐺2)

G G’

141. Phillips, J.M. and Venkatasubramanian, S., 2011. A gentle introduction to the kernel distance. arXiv preprint arXiv:1103.1625.



Quantifying Non-Determinism via Graph Kernel Distance

We evaluate the Weisfeiler-Lehman Subtree Pattern Kernel for 
quantifying dissimilarity between event graphs: 

§ Demonstrated performance on other graph classification tasks [1]
§ Scalability compared to other graph kernels
§ Incorporation of arbitrary vertex label data

1. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K. and Borgwardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep), pp.2539-2561.
2. Yanardag, P. and Vishwanathan, S.V.N., 2015, August. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1365-1374). ACM.
3. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P. and Kundu, M., 2018. The journey of graph kernels through two decades. Computer Science Review, 27, pp.88-111.

15



Quantifying Non-Determinism via Graph Kernel Distance

We evaluate the Weisfeiler-Lehman Subtree Pattern Kernel for 
quantifying dissimilarity between event graphs:

§ Demonstrated performance on other graph classification tasks [1]
§ Scalability compared to other graph kernels
§ Incorporation of arbitrary vertex label data

1. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K. and Borgwardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep), pp.2539-2561.
2. Yanardag, P. and Vishwanathan, S.V.N., 2015, August. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1365-1374). ACM.
3. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P. and Kundu, M., 2018. The journey of graph kernels through two decades. Computer Science Review, 27, pp.88-111.

15



We evaluate the Weisfeiler-Lehman Subtree Pattern Kernel for 
quantifying dissimilarity between event graphs:

§ Demonstrated performance on other graph classification tasks [1]
§ Scalability compared to other graph kernels
§ Incorporation of arbitrary vertex label data

1. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K. and Borgwardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep), pp.2539-2561.
2. Yanardag, P. and Vishwanathan, S.V.N., 2015, August. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1365-1374). ACM.
3. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P. and Kundu, M., 2018. The journey of graph kernels through two decades. Computer Science Review, 27, pp.88-111.

15

Quantifying Non-Determinism via Graph Kernel Distance



We evaluate the Weisfeiler-Lehman Subtree Pattern Kernel for 
quantifying dissimilarity between event graphs:

§ Demonstrated performance on other graph classification tasks [1]
§ Scalability compared to other graph kernels
§ Incorporation of arbitrary vertex label data

1. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K. and Borgwardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep), pp.2539-2561.
2. Yanardag, P. and Vishwanathan, S.V.N., 2015, August. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1365-1374). ACM.
3. Ghosh, S., Das, N., Gonçalves, T., Quaresma, P. and Kundu, M., 2018. The journey of graph kernels through two decades. Computer Science Review, 27, pp.88-111.

15

Quantifying Non-Determinism via Graph Kernel Distance



Kernel Distance Evaluation Methodology

• Construct event graphs for common communication patterns with:
§ Controlled degree of non-determinism 
§ Fixed amount of communication volume

• Hypothesis: As greater non-determinism is permitted in the runs, 
the graph kernel distances between the event graphs representing 
those runs will increase

17



Kernel Distance Evaluation Methodology

• Construct event graphs for common communication patterns with:
§ Controlled degree of non-determinism 
§ Fixed amount of communication volume

• Hypothesis: As greater non-determinism is permitted in the runs,
the graph kernel distances between the event graphs representing 
those runs will increase

17



Deterministic

Run 1

Run 2

All receives guaranteed to occur 
in same order run-to-run

18



Deterministic

Run 1

Run 2

All receives guaranteed to occur 
in same order run-to-run

Partially Non-Deterministic
Some receives guaranteed to 

occur in same order

18



Deterministic

Run 1

Run 2

All receives guaranteed to occur 
in same order run-to-run

These messages are always 
received in same order

Partially Non-Deterministic
Some receives guaranteed to 

occur in same order

18



Deterministic
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Deterministic Fully Non-Deterministic
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Kernel Distance Trends Across Multiple Runs

Run 1

Run 2

Run N

… … …

• Previous example only measured kernel distance between two executions
• But we want a statistical picture of the trend in kernel distance over time across many executions

= kernel distance between graphs i and j

= kernel distance from graph to itself, always 0

= redundant, due to symmetry

Kernel matrix
w/r/t chosen graph kernel K
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• Non-deterministic communication patterns have a chance 
of manifesting the same message order at runtime.

• Motivates looking at distribution of kernel distances
between pairs of runs rather than individual distances
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Evaluation Against a Realistic Communication Pattern

• We now evaluate against a communication pattern extracted from 
the AMG benchmark from the CORAL-2 Benchmark Suite 

• Known to exhibit both receiver-side non-determinism and sender-
side non-determinism [1]

• For our evaluation, we control proportion of non-deterministic 
communication volume by splitting ranks into two groups: 
§ One group performs the actual non-deterministic AMG pattern 
§ One group performs a determinized version of the pattern
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Lessons Learned

• Graph kernel distance is a useful proxy for degree of non-
determinism in a communication pattern

• This holds for both:
§ Simple communication patterns with only receiver-side 

non-determinism (i.e., reduce example)
§ More complex patterns with mixed receiver/sender-side 

non-determinism (i.e., AMG probe example)
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Workflow for Non-Determinism Characterization

• Phase 3: Detect periods of anomalous execution dissimilarity 
and localize potential root causes
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Applying our Workflow to miniAMR

• Adaptive mesh refinement (AMR) code from the Matevo
Benchmark Suite [1]

• We target miniAMR based on the following criteria:
§ MPI application exhibiting communication non-determinism
§ Root cause of non-determinism known a priori

1. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C., Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K. 
and Numrich, R.W., 2009. Improving performance via mini-applications. Sandia National Laboratories, Tech. Rep. SAND2009-5574, 3. 29
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Event Graph Slicing
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Distributions of Kernel Distances
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Kernel Distance Trends Over Time
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Linking Observed Non-Determinism to Root Causes
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…

A set of N event graphs 
modeling N runs of a 

non-deterministic application
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Kernel Distance Time Series for miniAMR
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Kernel Distance Time Series for miniAMR
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Identifying Anomalous Slices
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Identifying Anomalous Slices 
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Extract call stack labels from subgraphs within the slice:

Linking to Potential Root Causes
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Extract call stack labels from subgraphs within the slice:

Linking to Potential Root Causes
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Frequency of call-stacks across all flagged slices
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Frequency of call-stacks across all flagged slices
• Call stacks related to mesh refinement 

and load-balancing dominate
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Conclusion

• Our workflow identifies potential root causes of non-determinism 
in HPC applications by:
§ Building event graph models of executions
§ Quantifying trends in non-determinism via graph kernel distance
§ Linking runtime non-determinism to root causes

• Demonstrated viability against:
§ Isolated communication patterns (Sequoia-AMG)
§ Representative mini-apps (miniAMR)

• Future Work:
§ Target full-fledged production AMR applications (e.g., Enzo)
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Questions?


