Characterizing In Situ and In Transit Analytics of Molecular Dynamics Simulations for Next-generation Supercomputers

Stephen Thomas, Michael Wyatt, **Ian Lumsden**, Tu Mai Anh Do, Loïc Pottier, Rafael Ferreira da Silva, Harel Weinstein, Michel A. Cuendet, Trilce Estrada, Ewa Deelman, Michela Taufer

Acknowledgements

Τ.

M. Cuendet H. Weinstein

E. Deelman

M. Wyatt

R. da Silva

Τ.

T. Do

B. Mulligan

Sponsors:

S. Thomas

H. Carrillo

A. Razavi

I. Lumsden

USC

Trends in Next-Generation Systems: IO Gap and Ensembles

Classical Molecular Dynamics Simulations

Classical Molecular Dynamics Simulations

Forces on single atoms
 Acceleration
 Velocity
 Position

- MD step computes forces on single atoms (e.g., bond, dihedrals, nonbond)
 Forces are added to compute acceleration
- Acceleration is used to update velocities
- •Velocities are used to update the **atom positions**

Store 3D snapshot or frame

•Every n steps (Stride)

Extending HPC to Integrate Data Analytics

Augmenting HPC with In Situ and In Transit Analytics

Example of tools:

- DataSpaces (Rutgers U.)
- DataStager (GeorgiaTech)

Frames (or snapshots) of an MD trajectory:

- We want to capture what is going on in each frame **without**:
 - Disrupting the simulation (e.g., stealing CPU and memory on the node)
 - Moving all the frames to a central file system and analyzing them once the simulation is over
 - Comparing each frame with past frames of the same job
 - Comparing each frame with frames of other jobs

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

variables (55)

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective Collective Collective Collective Collective Collective variables(55) variables(60) variables(65) variables(70) variables(75) variables(80)

Collective variables can serve as proxy for structural and conformational changes

²¹ Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer. *"In-Situ Data Analysis and Indexing of Protein Trajectories,"* JCC 2017.

Dataflow Modeling for Analytics

Generator of MD Frames

Generator of MD Frames

Molecular System	Ν	GPU	#GPU/Node	Nodes	ns/day	Package	Source	Cluster
Apoa1	92K	V100	2	1	78	NAMD 2.13	NAMD benchmarks	NVIDIA PSG cluster
Gltph	268K	P100	2	1	55	GROMACS	This work	Rockefeller Uni. cluster
STVM	1M	V100	2	1	7.5	NAMD 2.13	NAMD benchmarks	NVIDIA PSG cluster
STMV matrix systems (5x2x2)	21M	V100	6	1024	128	NAMD 2.13	NAMD benchmarks	SUMMIT
STMV matrix systems (7x6x5)	224M	V100	6	1024	24	NAMD 2.13	NAMD benchmarks	SUMMIT
STMV matrix systems (10x10x10)	1.07B	K20X	1	8192	4	NAMD 2.12	NAMD benchmarks	TITAN GPU

T cell receptor 81,092 atoms

Gltph 270,088 atoms

Analysis: Proxy for Performance

bipartite distance matrices

Data Analytics

T. Johnston et al. In-Situ Data Analytics and Indexing of Protein Trajectories. *Journal of Computational Chemistry (JCC),* 38(16):1419-1430, 2017.

Analysis: Proxy for Performance

bipartite distance matrices

Analysis: Proxy for Performance

1e6 Х 0 X 1.6 $\left(\frac{N_{\alpha}}{m}\right)\frac{\left(\frac{N_{\alpha}}{m}-1\right)}{2}$ 10⁵ Х 0 0 Х d 1.4 (1.2 minute) 1.2 minute) 1.0 Elements) $\begin{array}{cccc} 0 & 0 & \times & \times \\ d & \times & 0 & 0 \\ \times & \times & 0 & 0 \end{array}$ Х D =0 104 Х # of Matrices 0 Х eigenvalues 0 0 Lx ХХ 0 10³ max $(2m)^2$ # 8.0 Size 9.0 Analytics **Dataflow** Matrix 2.0 representations 10¹ 10⁰ 0.0 Retriever 100 200 300 400 500 600 0 Many small **Few large** Segment Length (m) matrices matrices **Data Analytics**

bipartite distance matrices

Frame at time t: Two α -helixes

Few large matrices

Distances of two segments with segment length: $N\alpha/2 * C^{\alpha}$ atoms Segments:

 $\begin{bmatrix} C^{\alpha}_{1} \Box C^{\alpha}_{N\alpha/2} \end{bmatrix} \begin{bmatrix} C^{\alpha}_{N\alpha/2} \Box C^{\alpha}_{N\alpha/2} \end{bmatrix}$ Metadata: Single $\boldsymbol{\lambda}_{max}$ $\begin{bmatrix} C_{1}^{\alpha} & C_{N\alpha}^{\alpha} \\ C_{1}^{\alpha} & 0 & d_{ij} \\ C_{N\alpha/2-1}^{\alpha} & d_{ij} \end{bmatrix}$

Many small matrices

Distances of N α /2 segments with segment length: 2 * C^{α} atoms

Segments : $\begin{bmatrix} C^{\alpha}_{1} \Box C^{\alpha}_{2} \end{bmatrix} \begin{bmatrix} C^{\alpha}_{3} \Box C^{\alpha}_{4} \end{bmatrix}$ $\begin{bmatrix} C^{\alpha}_{5} \Box C^{\alpha}_{6} \end{bmatrix} \begin{bmatrix} C^{\alpha}_{7} \Box C^{\alpha}_{8} \end{bmatrix}$

$$[C^{\alpha}_{N\alpha/2-3} \Box C^{\alpha}_{N\alpha/2-2}][C^{\alpha}_{N\alpha/2-1} \Box C^{\alpha}_{N\alpha/2}]$$

Metadata:

 $\lambda_{max, 1} \lambda_{max, 2} \dots \lambda_{max, N\alpha/2}$

Many small matrices

Distances of $N\alpha/2$ segments with segment length: $C^{\alpha}_{1.}$ Ca $2 * C^{\alpha}$ atoms Segments : $\begin{bmatrix} C^{\alpha}_{1} \Box C^{\alpha}_{2} \end{bmatrix} \begin{bmatrix} C^{\alpha}_{3} \Box C^{\alpha}_{4} \end{bmatrix} \begin{bmatrix} C^{\alpha}_{5} \Box C^{\alpha}_{6} \end{bmatrix} \begin{bmatrix} C^{\alpha}_{7} \Box C^{\alpha}_{8} \end{bmatrix}$ 0 dij $[C^{\alpha}_{N\alpha/2-3} \Box C^{\alpha}_{N\alpha/2-2}][C^{\alpha}_{N\alpha/2-1} \Box C^{\alpha}_{N\alpha/2}]$ Metadata: 0 dji $\lambda_{max, 1} \lambda_{max, 2} \dots \lambda_{max, N\alpha/2}$

Segment size = proxy of number of matrices and matrix sizes

MD Simulation Time

MD Simulation Time

Dataflow Modeling for Analytics

Modeling Idle Times

S1, S2, S3: Generate MD frameW1, W2, W3: Write to shared memoryR1, R2, R3: Read from shared memoryA1, A2: Analyze frame

Modeling Idle Times

S1, S2, S3: Generate MD frameW1, W2, W3: Write to shared memoryR1, R2, R3: Read from shared memoryA1, A2: Analyze frame

Modeling Idle Times

Single Node (In Situ)

Balanced

2-step Model: Fraction of Analyzed Frames

BIG**ORANGE** BIG**IDEAS**

2-step Model: Fraction of Analyzed Frames

Error: Absolute error between data and fitting model

2-step Model: Frames Distribution

- Given a trajectory, we model the proportions *p* and *q* of analyzed frames (*f*) with periods *k* and *k*+1
 - Example: Gltph (27,000 atoms and TPS 318), trajectory of 1,000 frames.

Frame 1390

Frame

1390

Frame

1360

Frame

1330

Lessons Learned

- We measure and analyze the execution patterns associated with in situ and in transit dataflows
- We build a 2-step model to predict which frames are analyzed, given a molecular system, analytic module, and analytic parameters
- We apply our 2-step model to a case study to understand the impact of analytics parameters on capturing rare MD simulation events
- Future direction: leverage ML to drive decisions on what frames to capture and store at runtime based on scientific information

