
Three-Phase Workflow for Characterizing Non-Determinism

Project Overview
Runtime non-determinism in High Performance Computing (HPC) applications presents steep challenges for 
computational reproducibility and correctness. These challenges are magnified in the context of complex 
scientific codes where the links between observable non-determinism and root causes are unclear. We 
apply a three-phase workflow to (1) build graph-structured models of non-deterministic communication in 
parallel applications; (2) identity windows of execution with maximum run-to-run variability; and (3) map 
runtime non-determinism to source code level root causes.
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Phase 1: Build event graph 
models from N execution 
traces of an MPI application, 

Phase 2: Compute pairwise 
graph kernel distances for a 
sliding window over the 
event graphs, quantifying the 
change in cross-run similarity 
over time
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Graph Kernel Distance:
We use a graph kernel K to quantify 
cross-run similarity in terms of shared 
patterns of message sends/recvs

Floating point values with a given condition number and dynamic range

In our study we: 
• Generate sets of floating-point values 

parametrized by size, condition number, 
and dynamic range
• Sum the values in randomized order to 

simulate non-deterministic reduction 
order due to multithreading
• Study the effect on error variability when  

using multiple kinds of compensated summation

Lessons Learned:
• Graph kernel distance quantifies nondeterminism in communication patterns
• Clustering based on kernel distance groups executions by communication pattern
• Tracking average kernel distance over whole executions enables anomaly detection

Study of Recording Cost Variability

Cost to debug:
• 18 months of 

scientists’ time
• 9560 node-hours

1. Numerical Irreproducibility
Example: Rounding difference
between Xeon CPU and Xeon 
Phi caused deadlock [1]

We present a study on the cost of recording the Monte Carlo 
Benchmark (MCB) [6] under varied application configurations 
using the R&R tool ReMPI [7]
Application Parameters: 
• Amount of floating-point work
• Amount of communication

Experiment Parameters: 
• 100 runs per configuration
• 256-node runs

Lessons Learned:
• Recording cost varies with changes in application configuration
•We require models of non-deterministic communication 

patterns that capture and quantify the relevant patterns of 
non-deterministic events

Dangers of Non-Determinism at Exascale: Two Critical Challenges

Challenge 1: Numerical Irreproducibility Challenge 2: Costly Debugging

Our Modeling Methodology for Non-Deterministic Applications
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Dynamic Range (DR)

{x1, x2, x3, …. xn}

{Sσ_1 , Sσ_2 , Sσ_3 ….. Sσ_100 } 

{εσ_1 , εσ_2 , εσ_3 ….. εσ_100 } 

variability ≈ degree of irreproducibility

…..

Shade == cheapest sum that keeps variability below threshold

Kahan [3]Standard Composite-Precision [4]

HPC applications at exascale must contend with 
an unprecedented degree of non-determinism 
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• Non-deterministic bugs are costly
• Record-and-Replay (R&R) tools [5]

offer a means to capture, then 
deterministically replay executions

• Reproducibility regained!
• Debugging re-enabled!

Caveat: Uncertain runtime 
and memory overheads 

Variability threshold = 2.5e-13Variability threshold = 3e-13Variability threshold = 3.5e-13 Variability threshold = 5e-13
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Dynamic Range (Higher == Wider Range of Exponents) 

Phase 1: Build event graph models from 
execution traces of MPI applications

Phase 3: Leverage pairwise run-to-run similarities to: 
• Quantify run-to-run variability 
• Cluster executions based on communication patterns
• Detect periods of anomalously high variability

Critical Parameters
• Number of values: n 
• Condition number: k
• Dynamic range: dr

|Sexact�Sj|
|Sexact|  (n� 1) · u ·

Pn
i=1 |xi|

|
Pn

i=1 xi|

u ⇡ 1e-16
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Question: Given an error variability threshold, which summation algorithm is needed?

Lessons Learned:
• Condition number and dynamic range of floating-point inputs 

will strongly influence result variability at exascale
• Compensated summation can help, but degree of 

compensation must be tuned to properties of inputs

At exascale, variable reduction order of floating-point values, 
coupled with non-associativity of floating-point arithmetic
inhibits numerical reproducibility

This material is based upon work supported by the National Science Foundation under grant no. CCF SHF #1841552 / #1513025  and OAC #1841399
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We demonstrate that graph kernel 
distance distinguishes between 
non-deterministic comm. patterns
in synthetic and real applications

a = 109, b = �109, c = 10�9

Summation order 1
(a+ b) + c = (109 � 109) + 10�9 = 10�9

Summation order 2
a+ (b+ c) = 109 + (�109 + 10�9) = 0
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We present a study on the relationship between the numerical 
properties of a set of floating-point values, and the amount of 
compensated summation needed to control error variability
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error bounds

( )
FP sum1

( )
FP sum2

exact sum exact sum

Summed under multiple randomized reduction orders
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Numerical Properties’ Effect on Error Variability 

2. Costly Debugging
Example: A non-deterministic bug in a 
widely-used linear algebra library [2]

Phase 2: Compute pairwise similarities
of executions using graph kernels

Executions clustered by 
structural similarity

Kernel similarity induces 
a notion of distance 
between executions

98% of runs failed 
to reproduce the bug 
due to application 
non-determinism

Tracing Library

Tracing Library

Quantifying Run-to-Run 
Variability
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16-process runs, 10 runs per config.
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64-process runs, 10 runs per config.

Graph Kernel Used: Weisfeiler-Lehman Subtree Kernel [1]
Label Used: Scalar logical timestamp (i.e., Lamport clock timestamp)

Hypothesis: Average graph similarity decreases as 
fraction of nondeterministic communication increases

We generate synthetic traces 
containing a tunable mixture of 
deterministic and nondeterministic
communication patterns and 
demonstrate that graph kernel 
distance captures the degree of 
non-determinism present

Clustering Communication 
Patterns 

Anomaly Detection

Hierarchical clustering of deterministic and non-
deterministic subgraphs from synthetic trace data

Clustering of full executions of two Monte Carlo 
applications: similar simulations, different non-
deterministic communication patterns

Execution Time

We demonstrate that average graph 
kernel distance for a moving window 
over a set of executions reveals 
periods of peak non-determinism 
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Example of floating-point non-associativity: Reduction Order 1 Reduction Order 2

Different reduction orders yield different error accumulations
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• We traced 200 runs of a non-deterministic cosmological simulation
• By sampling subgraphs from the corresponding event graphs and 

computing kernel distance, we obtain a view of how executions 
diverge from each other over time

containing both 
communication and call-path data

Phase 3: Identify regions of high cross-run dissimilarity and use associated 
call-path data to map back to source-code level sources of non-determinism

Start of run End of run
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r) Patterns in graph kernel 
distances for each window 
over time reveal trends in 
application non-determinism

Call-path data associated 
with windows of high 
dissimilarity locate root 
sources of non-determinism

send recv

Takeaways:
• Patterns in non-deterministic 

communication found
• Root causes localized

Relevant paths in 
call-graph identified

main

Tracing Library

Non-Deterministic
MPI Application

Tracing Library

Event Graphs:
Directed, labeled acyclic 
graphs that represent 
event ordering and 
associated call-pathsSets of trace files 

from N runs

This kernel distance time series is computed from 
event graphs of 200 runs of Enzo, an AMR application
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