
Three-Phase Workflow for Characterizing Non-Determinism

Project Overview
Runtime non-determinism in High Performance Computing (HPC) applications presents steep challenges for
computational reproducibility and correctness. These challenges are magnified in the context of complex
scientific codes where the links between observable non-determinism and root causes are unclear. We
apply a three-phase workflow to (1) build graph-structured models of non-deterministic communication in
parallel applications; (2) identity windows of execution with maximum run-to-run variability; and (3) map
runtime non-determinism to source code level root causes.

ANACIN-X
Characterizing Non-Deterministic Communication

Find out more at:
https://globalcomputing.group

Phase 1: Build event graph
models from N execution
traces of an MPI application,

Phase 2: Compute pairwise
graph kernel distances for a
sliding window over the
event graphs, quantifying the
change in cross-run similarity
over time

Run N

…

Run 1

Run 2

…

timet t'

Event
graph
slice at
time t

Event
graph
slice at
time t’

Graph Kernel Distance:
We use a graph kernel K to quantify
cross-run similarity in terms of shared
patterns of message sends/recvs

Floating point values with a given condition number and dynamic range

In our study we:
• Generate sets of floating-point values

parametrized by size, condition number,
and dynamic range
• Sum the values in randomized order to

simulate non-deterministic reduction
order due to multithreading
• Study the effect on error variability when

using multiple kinds of compensated summation

Lessons Learned:
• Graph kernel distance quantifies nondeterminism in communication patterns
• Clustering based on kernel distance groups executions by communication pattern
• Tracking average kernel distance over whole executions enables anomaly detection

Study of Recording Cost Variability

Cost to debug:
• 18 months of

scientists’ time
• 9560 node-hours

1. Numerical Irreproducibility
Example: Rounding difference
between Xeon CPU and Xeon
Phi caused deadlock [1]

We present a study on the cost of recording the Monte Carlo
Benchmark (MCB) [6] under varied application configurations
using the R&R tool ReMPI [7]
Application Parameters:
• Amount of floating-point work
• Amount of communication

Experiment Parameters:
• 100 runs per configuration
• 256-node runs

Lessons Learned:
• Recording cost varies with changes in application configuration
•We require models of non-deterministic communication

patterns that capture and quantify the relevant patterns of
non-deterministic events

Dangers of Non-Determinism at Exascale: Two Critical Challenges

Challenge 1: Numerical Irreproducibility Challenge 2: Costly Debugging

Our Modeling Methodology for Non-Deterministic Applications

Expecting 62 msgs Sends 63 msgs

10k

N
od

e-
Ho

ur
s

Wasted Useful

Non-Determinism Modeling Results

Concurrency

DeterminismAsynchronyDeterminism

Concurrency

Asynchrony

HPC Today HPC Tomorrow

To Exascale

Dynamic Range (DR)

{x1, x2, x3, …. xn}

{Sσ_1 , Sσ_2 , Sσ_3 ….. Sσ_100 }

{εσ_1 , εσ_2 , εσ_3 ….. εσ_100 }

variability ≈ degree of irreproducibility

…..

Shade == cheapest sum that keeps variability below threshold

Kahan [3]Standard Composite-Precision [4]

HPC applications at exascale must contend with
an unprecedented degree of non-determinism

Record-and-
Replay Tool

Observe events

Persist event
representation

Nondeterministic
execution

Represent
events

in-memory

Deterministic
execution

Control events
during replay

p0

p1

p2

p0

p1

p2

Nondeterministic
execution

Deterministic
re-execution

• Non-deterministic bugs are costly
• Record-and-Replay (R&R) tools [5]

offer a means to capture, then
deterministically replay executions

• Reproducibility regained!
• Debugging re-enabled!

Caveat: Uncertain runtime
and memory overheads

Variability threshold = 2.5e-13Variability threshold = 3e-13Variability threshold = 3.5e-13 Variability threshold = 5e-13

Su
m

 C
on

di
tio

n
N

um
be

r
(H

ig
he

r =
=

M
or

e
Ca

nc
el

la
tio

n)

Dynamic Range (Higher == Wider Range of Exponents)

Phase 1: Build event graph models from
execution traces of MPI applications

Phase 3: Leverage pairwise run-to-run similarities to:
• Quantify run-to-run variability
• Cluster executions based on communication patterns
• Detect periods of anomalously high variability

Critical Parameters
• Number of values: n
• Condition number: k
• Dynamic range: dr

|Sexact�Sj|
|Sexact| (n� 1) · u ·

Pn
i=1 |xi|

|
Pn

i=1 xi|

u ⇡ 1e-16

1

Question: Given an error variability threshold, which summation algorithm is needed?

Lessons Learned:
• Condition number and dynamic range of floating-point inputs

will strongly influence result variability at exascale
• Compensated summation can help, but degree of

compensation must be tuned to properties of inputs

At exascale, variable reduction order of floating-point values,
coupled with non-associativity of floating-point arithmetic
inhibits numerical reproducibility

This material is based upon work supported by the National Science Foundation under grant no. CCF SHF #1841552 / #1513025 and OAC #1841399

References:

Scenario 2:
Comm. Amount

FP
 A

m
ou

nt

Scenario 4:
Comm. Amount

FP
 A

m
ou

nt

Scenario 1:
Comm. Amount

FP
 A

m
ou

nt

Scenario 3:
Comm. Amount

FP
 A

m
ou

nt

Percentage of messages recorded (i.e., recording cost)
(More Expensive)

Nu
m

be
r o

f M
PI

Ra
nk

s a
cro

ss
all

 ru
ns

We demonstrate that graph kernel
distance distinguishes between
non-deterministic comm. patterns
in synthetic and real applications

a = 109, b = �109, c = 10�9

Summation order 1
(a+ b) + c = (109 � 109) + 10�9 = 10�9

Summation order 2
a+ (b+ c) = 109 + (�109 + 10�9) = 0

1

We present a study on the relationship between the numerical
properties of a set of floating-point values, and the amount of
compensated summation needed to control error variability

Co
nd

iti
on

 N
um

be
r (

K)

x1 x2 x3 x4 x5 x6 x7 x8

+

+

+

+

+

+

s

x1 x2 x3 x4 x5 x6 x7 x8

+ + +

+

+ +

s

x1 x2 x3 x4 x5 x6 x7 x8

+ + + +

+ +

s

1

x1 x2 x3 x4 x5 x6 x7 x8

+

+

+

+

+

+

s

x1 x2 x3 x4 x5 x6 x7 x8

+ + +

+

+ +

s

x1 x2 x3 x4 x5 x6 x7 x8

+ + + +

+ +

s

1

error bounds

()
FP sum1

()
FP sum2

exact sum exact sum

Summed under multiple randomized reduction orders

Deterministic
Subgraphs

Nondeterministic
Subgraphs

Clu
ste

r S
ep

ar
at

ion

Execution ID

Numerical Properties’ Effect on Error Variability

2. Costly Debugging
Example: A non-deterministic bug in a
widely-used linear algebra library [2]

Phase 2: Compute pairwise similarities
of executions using graph kernels

Executions clustered by
structural similarity

Kernel similarity induces
a notion of distance
between executions

98% of runs failed
to reproduce the bug
due to application
non-determinism

Tracing Library

Tracing Library

Quantifying Run-to-Run
Variability

70% Det.
30% ND

50% Det.
50% ND

30% Det.
70% ND

32-process runs, 10 runs per config.
Ke

rn
el

 D
ist

an
ce

16-process runs, 10 runs per config.

70% Det.
30% ND

50% Det.
50% ND

30% Det.
70% ND

70% Det.
30% ND

50% Det.
50% ND

30% Det.
70% ND

64-process runs, 10 runs per config.

Graph Kernel Used: Weisfeiler-Lehman Subtree Kernel [1]
Label Used: Scalar logical timestamp (i.e., Lamport clock timestamp)

Hypothesis: Average graph similarity decreases as
fraction of nondeterministic communication increases

We generate synthetic traces
containing a tunable mixture of
deterministic and nondeterministic
communication patterns and
demonstrate that graph kernel
distance captures the degree of
non-determinism present

Clustering Communication
Patterns

Anomaly Detection

Hierarchical clustering of deterministic and non-
deterministic subgraphs from synthetic trace data

Clustering of full executions of two Monte Carlo
applications: similar simulations, different non-
deterministic communication patterns

Execution Time

We demonstrate that average graph
kernel distance for a moving window
over a set of executions reveals
periods of peak non-determinism

Modeling Non-Determinism in HPC Applications
Dylan Chapp1,2

1 University of Delaware | 2 University of Tennessee Knoxville

Example of floating-point non-associativity: Reduction Order 1 Reduction Order 2

Different reduction orders yield different error accumulations

Ke
rn

el
 D

ist
an

ce

(H
ig

he
r =

=
Le

ss
 R

un
-to

-R
un

Si

m
ila

rit
y)

• We traced 200 runs of a non-deterministic cosmological simulation
• By sampling subgraphs from the corresponding event graphs and

computing kernel distance, we obtain a view of how executions
diverge from each other over time

containing both
communication and call-path data

Phase 3: Identify regions of high cross-run dissimilarity and use associated
call-path data to map back to source-code level sources of non-determinism

Start of run End of run

Gr
ap

h
Ke

rn
el

 D
ist

an
ce

(h
ig

he
r =

=
ru

ns
 le

ss
 si

m
ila

r) Patterns in graph kernel
distances for each window
over time reveal trends in
application non-determinism

Call-path data associated
with windows of high
dissimilarity locate root
sources of non-determinism

send recv

Takeaways:
• Patterns in non-deterministic

communication found
• Root causes localized

Relevant paths in
call-graph identified

main

Tracing Library

Non-Deterministic
MPI Application

Tracing Library

Event Graphs:
Directed, labeled acyclic
graphs that represent
event ordering and
associated call-pathsSets of trace files

from N runs

This kernel distance time series is computed from
event graphs of 200 runs of Enzo, an AMR application

Dylan Chapp, Danny Rorabaugh, Heike Jagode, Sanjukta Bhomick, Michela Taufer

Chapp, D., Rorabaugh, D., Sato, K., Ahn, D.H. and Taufer, M., 2019. A three-phase workflow for
general and expressive representations of nondeterminism in HPC applications. The
International Journal of High Performance Computing Applications, 33(6), pp.1175-1184.

time

