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Simulation and Analytics Integration

Overview:
This project targets one of the
most common simulations at
petascale: molecular dynamics
(MD) simulations studying the
time evolution of a molecular
system at atomic resolution.
Next-generation computing
systems will have dramatically
higher performance than
current systems. But I/O
bandwidth and parallel file
system capacity will not grow at
the same rate. Burst buffers and
I/O staging will not be able to
address the analysis challenges
in MD simulations.

Project Description and Impacts

Application to Relevant MD Systems

Data Representation for Trajectory Analysis

In Situ Approach:
Our approach transforms the centralized nature of canonical
MD analysis into a distributed analysis performed in situ.
● Designed to support a broad range of MD codes, and

enables on-the-fly tuning of MD workflows (i.e., stop, start,
and fork MD jobs).

● Analyzes data as they are generated, save to disk only what
is really needed for future analysis, and annotate MD
outputs to drive the next steps in increasingly complex MD
workflows.

Analysis Approach:
We represent macromolecules (e.g., from MD frames) in a way
that exposes their structure (i.e., secondary and tertiary
characteristics) and can be processed efficiently through state-
of-the-art machine learning techniques such as convolutional
neural networks.

By harnessing data from ensembles of MD trajectories in situ,
we capture rare events and state transformations in MD
trajectories at runtime.
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Dynamic information extraction:
Use our approach to extract and annotate quantitative
information about the dynamics of complex molecular
machines in the membrane as the MD simulations evolve.
Specific example: The Human dopamine transporter (hDAT)

Our goal is developing new comprehensive workflows for MD
simulations in which HPC meets data analytics.

Parallel File System

Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP2-Regulated 
Dynamics of the N-Terminus

Khelashvili et al. (ACS Chemical Neuroscience 2015 6 (11), 1825-1837DOI: 10.1021/acschemneuro.5b00179)
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Figure 2: Example of encoding procedure for the gene V protein (PDBid: 1AE2).

3.4 Formatting and Resizing
The �nal step consists of performing an image resizing (e.g., ap-
plying a bi-cubic interpolation) to produce an output of consistent
dimensions across proteins regardless of their original length. As-
suming a new size N the output is a N ⇥ N ⇥ 3 tensor, where N is
the new size and could be smaller or larger than the originalM , 3
is again the number of channels used in the encoding. The output
image, or tensor, either encodes more than one residue per pixel,
or uses multiple pixels to encode one residue. The size of N can be
chosen di�erently to optimize di�erent performance metrics. For
example, N can be equal to the number of amino acid residues in
the longest protein in a dataset to optimize �delity of the encoding;
it can be the average number of residues in the dataset to keep
a trade o� between �delity and e�ciency; or it can be set to an
arbitrary small size to maximize e�ciency. For our experiments we
use N = 227, which is a standard size for image processing, and
enables us to compare multiple CNNs using this representation.

As our method provides a structural representation of proteins
that is di�erent from other formats, its analysis mechanisms are
also di�erent. Identifying structural motifs across a large database
or performing protein modeling for function prediction does not
require alignment and/or superimposition; thus, breaking a perfor-
mance barrier for high throughput analysis. Figure 3 shows exam-
ples of some very di�erent macromolecules in a three-dimensional
representation and our graphic encoding. By looking at these im-
ages it is easy to distinguish how our encoding exposes patterns
at di�erent granularities in the image. Our representation trans-
forms traditional structural biology problems into image pattern
recognition, and it enables a straightforward use of sophisticated
image processing and machine learning techniques for analysis and
prediction.

4 PROTEIN FUNCTION PREDICTION BASED
ON IMAGES

Proteins contain a wide variety of structural motifs, which can
also constitute functional microdomains that support the protein’s
functions. In this section we test the ability of our graphic encoding
to expose structural information necessary to perform basic protein
function prediction.

4.1 Dataset Description
Our dataset consists of 62,991 proteins from the ProteinData Bank [3].
The protein data bank format (pdb) provides a standard representa-
tion for macromolecular structural data derived from X-ray di�rac-
tion and NMR studies. A PDB �le encodes a protein as a sequence
of atoms, their type, and their three-dimensional coordinates. This
representation can be easily converted to our encoding as explained
in Section 3. Proteins in the dataset range in size from less than 100
non-hydrogen atoms to more than 50,000. The mean size is 6508
atoms with a standard deviation of 19495. Their mean resolution
is 2.2 Angstroms, with a 1.7 standard deviation. The main source
organism in this dataset is the Homo Sapiens, but the collection
also includes Escherichia coli, Mus musculus, Saccharomyces cere-
visiae, Rattus norvegicus, and Mycobacterium tuberculosis among
others. Figure 3 depicts multiple examples of proteins in our dataset
that were transformed from a three-dimensional structure to our
graphic encoding.

To perform function prediction in this dataset, we obtain GO
terms through the RCSB Protein Data Bank [4] and their biological
details report. GO terms are established by the Gene Ontology Con-
sortium [1, 8, 9] (GOC). GOC provides a standardized and consistent
way of describing and documenting gene products across databases.
The GO project comprises three structured ontologies with a well
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