Containerized Environment for Reproducibility and Traceability of Scientific Workflows

Student: Paula Olaya* Mentors: Jay Lofstead *, Michela Taufer * *University of Tennessee, Knoxville, *Sandia National Laboratory

Problem Overview

- Scientific domains use simulations to understand and predict natural phenomena
- Trusting the output of these simulations is vital for the scientists
- Trust requires reproducibility, replicability, transparency and traceability of the simulation process and its results

Hypothesis: Annotating the workflow execution at system-level provides a way to ensure reproducibility, replicability, transparency and traceability of simulations

- When we annotate the execution at system-level, we are able to build the record trail of data moving across the workflow
- This record trail of data includes every workflow component used to generate the new data (e.g., input datasets, applications, and parameter values)

Our Solution: a Containerized Environment

Leverage cutting edge container technologies to address metadata from the OS level to build the record trail and ensure the reproduction and traceability of scientific workflows

- Create an application-agnostic containerized environment
- Capture workflow record trails at runtime

Why container technology?

- Portability: Immutable applications machine-agnostic
- Isolation: namespaces
- Encapsulation: sif format
- Unique identification: UUID

Why Singularity?

Info: file name, UUIDs,

creation + modification date

- Reproducible software stacks
- Compatibility with complex architectures

- Mobility of compute
- Security model

Data Container: Data compressed and added as a single and independent partition

App Container:

System with specific software stack built from recipe and added as a single and independent partition

For more information, please visit the following link:

extract the metadata. It

builds and allocates the

record trail

Supported Workflows

We implement our prototype to support four workflows with two base applications:

- Visualization applications
- ML applications

Costs: Time and Memory

Execution Time: Measure average wall-clock over 500 executions for workflow 4

With a more complex and larger application like the RF model the wall-clock time is tolerable (0.7% overhead)

Space Overhead: Size of the workflow components (e.g., data and applications)

 Analyze overhead introduced by data and application containers size

Data container includes:

- O Data files (i.e., Inputs, outputrf.csv, and outputkknn.csv)
- Workflow metadata (i.e. metadata.json)

		Original Wor	kflow	Containerized Workflow		
	3	File	Size [KB]	File	Size [KB]	
		Inputs	12,072	inputs.sif	14,368	
		outputkknn.csv	2,264	kknn_output.sif	4,132	
		outputrf.csv	2,264	rf_output.sif	4,132	

The **space overhead** for **data containers** is ~2 MB, caused by the filesystem used

Application container includes:

- Application executable (i.e., gnuplotScript.sh)
- SW package includes system tools, system libraries, and settings (i.e., Ubuntu, gnuplot)

	Original Wo	rkflow	Containerized Workflow		
	File	Size [KB]	File		Size [KB]
1	gnuplotScript.sh	4	app.sif	gnuPlotScript.sh	4
_	gnuplot	139		gnuplot	139
	Ubuntu 16.04	>40000		Ubuntu 16.04	153,000

The app container space overhead is driven by the software stack and OS

Conclusions

Our containerized environment supports:

- No modification of the applications
- Zero-copy transfer of data between containers
- Record trail of different scenarios for workflow metadata
- Metadata attached to dataflow
- Tolerable overhead as workflow complexity increases

Future Work

- Leverage our containerized environment for a broader range of workflows
- Expand containers with automatic set-up, retrieved, and enabled reproducibility of the workflow

without going through

external storage

additional steps involving

Acknowledgements

Thank you to my mentors Dr. Michela Taufer and Dr. Jay Lofstead Special regards to the Singularity team, specially to Cedric (@cclerget) and Ian Kaneshiro In collaboration with Sandia National Laboratory and UTK.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear