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Problem Overview

e Scientific domains use simulations to understand and predict natural phenomena

e Trusting the output of these simulations is vital for the scientists
e Trust requires reproducibility, replicability, transparency and traceability of the simulation process and its results

Hypothesis: Annotating the workflow execution at system-level provides a way to ensure reproducibility, replicability,
transparency and traceability of simulations

e \When we annotate the execution at system-level, we are able to build the record trail of data moving across the

workflow

e This record trail of data includes every workflow component used to generate the new data (e.g., input datasets,
applications, and parameter values)

Our Solution: a Containerized Environment

Leverage cutting edge container technologies to address metadata from the OS level to build the record trail and ensure

the reproduction and traceability of scientific workflows

e Create an application-agnostic containerized environment

e Capture workflow record trails at runtime

Why container technology?

@
e [solation: namespaces
@
@

Data Container:

Data compressed and
added as a single and
independent partition

App Container:
System with specific
software stack built
from recipe and added
as a single and
independent partition

For more
information,
please visit the
following link:
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Portability: Immutable applications machine-agnostic

Encapsulation: sif format
Unique identification: UUID
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Zero-copy data transfer:
It allows the containers to
directly exchange the data

enclosed in their directories
without going through
additional steps involving
external storage
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Why Singularity?

Security model
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App

Metadata

b Dynamic
b Static -

Singularity Plugin:

Package dynamically loaded
that interacts with all the
workflow components to
extract the metadata. It
builds and allocates the
record trail
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Reproducible software stacks
Mobility of compute
Compatibility with complex architectures
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Record trail

Record Trail:
Format: json

Info: file name, UUIDs,
creation + modification date

We implement our
prototype to support
four workflows with

two base applications:

e Visualization
applications
e ML applications
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Supported workflow taxonomy
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Supported Workflows

Tested workflow applications

<inputl.txt,
input2.txt,
input3.txt>

<plotl.png,
plot2.png,
plot3.png>

— <gnuplot.sh> —»

<inputl.txt> — » <plotl.png>

<input2.txt> —# <gnuplot.sh> —» <plot2.png>

<input3.txt> — » <plot3.png>

{ <kknn.r> —»  <kknn_out.csv>
<rf.r> <rf_out.csv>

<train.csv> —» <kknn.r>

<train.csv,
eval.csv>

;

:

<kknn_out.csv>

<eval.csv> —Lp <rf.r> — <rf_out.csv>

Costs: Time and Memory

Execution Time: Measure average wall-clock

over 500 executions for workflow 4

With a more complex and larger application
like the RF model the wall-clock time is
tolerable (0.7% overhead)

Space Overhead: Size of the workflow
components (e.g., data and applications)

e Analyze overhead introduced by data and
application containers size
Data container includes:

o Data files (i.e.,
outputkknn.csv)

Inputs, outputrf.csv, and

o Workflow metadata (i.e. metadata.json)
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Application container includes:
o Application executable (i.e., gnuplotScript.sh)
o SW package includes system tools, system

libraries, and settings (i.e., Ubuntu, gnuplot)

Original Workflow

Containerized Workflow

Original Workflow

Containerized Workflow

File Size [KB] [File Size [KB]

- Inputs 12,072|inputs.sif 14,368
outputkknn.csv 2,264 kknn_output.sif 4,132
outputrf.csv 2,264 rf output.sif 4,132

File

Size [KB] [File
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gnuplotScript.sh

4 gnuPlotScript.sh

gnuplot
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The space overhead for data containers is
~2 MB, caused by the filesystem used

Conclusions

Our containerized environment supports:

® No modification of the

® /ero-copy transfer of data
Record trail of different scenarios for workflow metadata® Expand containers with automatic

applications

@
® Metadata attached to dataflow
@

Tolerable overhead as workflow complexity increases

vetween containers

by the software stack and OS

Future Work

® lLeverage our containerized
environment for a broader range of
workflows

set-up, retrieved, and enabled

reproducibility of the workflow

The app container space overhead is driven



http://gnuplotscript.sh

