Containerized Environment for Reproducibility and Traceability of Scientific Workflows

Student: Paula Olaya® Mentors: Jay Lofstead *, Michela Taufer *
*University of Tennessee, Knoxville, "Sandia National Laboratory

Problem Overview

e Scientific domains use simulations to understand and predict natural phenomena

e Trusting the output of these simulations is vital for the scientists
e Trust requires reproducibility, replicability, transparency and traceability of the simulation process and its results

Hypothesis: Annotating the workflow execution at system-level provides a way to ensure reproducibility, replicability,
transparency and traceability of simulations

e \When we annotate the execution at system-level, we are able to build the record trail of data moving across the

workflow

e This record trail of data includes every workflow component used to generate the new data (e.g., input datasets,
applications, and parameter values)

Our Solution: a Containerized Environment

Leverage cutting edge container technologies to address metadata from the OS level to build the record trail and ensure

the reproduction and traceability of scientific workflows

e Create an application-agnostic containerized environment

e Capture workflow record trails at runtime

Why container technology?

@
e [solation: namespaces
@
@

Data Container:

Data compressed and
added as a single and
independent partition

App Container:
System with specific
software stack built
from recipe and added
as a single and
independent partition

For more
information,
please visit the
following link:

O
et T h
[=] K5

Portability: Immutable applications machine-agnostic

Encapsulation: sif format
Unique identification: UUID

Data container

Data.
1

Metadata

b Dynamic

@ Static -

Zero-copy data transfer:
It allows the containers to
directly exchange the data

enclosed in their directories
without going through
additional steps involving
external storage

Zero-
copy

—

Why Singularity?

Security model

App container

App

Metadata

b Dynamic
b Static -

Singularity Plugin:

Package dynamically loaded
that interacts with all the
workflow components to
extract the metadata. It
builds and allocates the
record trail

Zero-

—_— Data_

Reproducible software stacks
Mobility of compute
Compatibility with complex architectures

Data container

Metadata

~ Dynamic
I!*> Static

Static Metadata Input

.+ Static Metadata App

Static Metadata Output

Record trail

Record Trail:
Format: json

Info: file name, UUIDs,
creation + modification date

We implement our
prototype to support
four workflows with

two base applications:

e Visualization
applications
e ML applications

a4

Supported workflow taxonomy

<datai> il

<data > |__
il

<datai2> -

<data >
i3

<app>

—fz

<app> —»

-

<app,> —»
<datai> {
<app,” —

<data > __, <app> —»

<data > L, <app> —»

<data >
(0]

<data >
ol
<data >
02
<data >
03

<data >
ol

<data >
02

<data >
ol

<data >
02

Supported Workflows

Tested workflow applications

<inputl.txt,
input2.txt,
input3.txt>

<plotl.png,
plot2.png,
plot3.png>

— <gnuplot.sh> —»

<inputl.txt> — » <plotl.png>

<input2.txt> —# <gnuplot.sh> —» <plot2.png>

<input3.txt> — » <plot3.png>

{ <kknn.r> —» <kknn_out.csv>
<rf.r> <rf_out.csv>

<train.csv> —» <kknn.r>

<train.csv,
eval.csv>

;

:

<kknn_out.csv>

<eval.csv> —Lp <rf.r> — <rf_out.csv>

Costs: Time and Memory

Execution Time: Measure average wall-clock

over 500 executions for workflow 4

With a more complex and larger application
like the RF model the wall-clock time is
tolerable (0.7% overhead)

Space Overhead: Size of the workflow
components (e.g., data and applications)

e Analyze overhead introduced by data and
application containers size
Data container includes:

o Data files (i.e.,
outputkknn.csv)

Inputs, outputrf.csv, and

o Workflow metadata (i.e. metadata.json)

10

(0] O

Wall-clock Time [s]

Environment
B Original

Containerized

kKKNN

Application RF

Application container includes:
o Application executable (i.e., gnuplotScript.sh)
o SW package includes system tools, system

libraries, and settings (i.e., Ubuntu, gnuplot)

Original Workflow

Containerized Workflow

Original Workflow

Containerized Workflow

File Size [KB] [File Size [KB]

- Inputs 12,072|inputs.sif 14,368
outputkknn.csv 2,264 kknn_output.sif 4,132
outputrf.csv 2,264 rf output.sif 4,132

File

Size [KB] [File

Size [KB]

gnuplotScript.sh

4 gnuPlotScript.sh

gnuplot

a4

139 app.sifignuplot

Ubuntu 16.04

139

>40000 Ubuntu 16.04

153,000

The space overhead for data containers is
~2 MB, caused by the filesystem used

Conclusions

Our containerized environment supports:

® No modification of the

® /ero-copy transfer of data
Record trail of different scenarios for workflow metadata® Expand containers with automatic

applications

@
® Metadata attached to dataflow
@

Tolerable overhead as workflow complexity increases

vetween containers

by the software stack and OS

Future Work

® lLeverage our containerized
environment for a broader range of
workflows

set-up, retrieved, and enabled

reproducibility of the workflow

The app container space overhead is driven

http://gnuplotscript.sh

