
Optimizing Vector Particle-In-Cell (VPIC)
for Memory Constrained Systems Using Half-Precision

Nigel Tan¹, Robert Bird² (advisor), Michela Taufer¹ (advisor)
¹University of Tennessee Knoxville, ²Los Alamos National Laboratory

● Particle simulations require vast quantities of particles to model real world
phenomenon with modern simulations reaching trillions of particles [1]

● Particle simulation scale is more limited by memory than compute power
● Memory growth cannot keep up with compute growth
● Systems are shifting more compute power into accelerators which further limits scale

● Modern CPUs support up to 4 TB of memory
● GPUs are limited to at most 32 GB
● Data movement between CPU and accelerators is costly (PCIe 4.0 BW: 32 GB/s)

● High performance 3D PIC code developed by Los Alamos National Laboratory with
a long history of large scale simulations
● Simulate magnetic reconnection, fusion, solar weather, amongst other plasma

phenomenon
● Is highly optimized for modern CPUs
● Is NOT optimized for accelerators

Architecture FP16
Storage

FP16
Conversion

FP16
Arithmetic

Intel x86-64 ✓ * X

AMD x86-64 ✓ * X

ARMv8.2-A ✓ ✓ **
IBM Power9 ✓ * X

Nvidia GPUs ✓ ✓ ✓

AMD GPUs ✓ ✓ ✓

Spatial domain: Particles are
distributed across an n-D space that is

decomposed into a n-D grid
Iterative process: Four key steps define a

VPIC iteration

Particle Representation and Storage

float dx // Position

float dy

float dz

float ux // Momentum

float uy

float uz

int i // Cell index

float w // Weight

● Each particle requires 32 bytes as shown below
● Particles take up >90% of memory usage
● Cell index representation is already optimal and

momentum is difficult to shrink

Example of
macroparticle
modeling 55
real particles

Optimizing Particle Weight Storage
● Each simulated particle is a macroparticle
● Weight defines how many real particles modeled by the

macroparticle
● Particle weight generally does not change

dx

dy

dz

ux

uy

uz

i

w

float

float

float

float

float

float

int

short

float

float

float

float

float

float

int

Default
(VPIC)

Short
Weight (SW)

Constant
Weight (CW)

6.25%
memory
savings

12.5%
memory
savings

Half Precision Particle Position Storage

Results

Compared to Half-Precision
● Bfloat16 lose precision

(decimal digits)
● TensorFloat requires more storage

(32 bits vs 16 bits)

Precision Sign Exponent Fraction Decimal Digits
Double 1 11 52 ~15.9
Single 1 8 23 ~7.2
Half 1 5 10 ~3.3

Bfloat16 1 8 7 ~2.4
TensorFloat 1 8 10 ~3.3

Global Coordinates Local Coordinates

IEEE 754 Floating-point numbers are “logarithmically” distributed [2]

● Points further
away from 0 lose
precision

● Wastes bits
representing
points outside the
grid space

● Points are more
evenly distributed

● Enable lower
precision for
position on a
sufficiently fine
resolution grid

Position = (dx,dy) Position = (i*Hx+dx,j*Hy+dy)

31.25%
memory
savings

VPIC VPIC+CW+HP
dx float

dy float

dz float

ux float

uy float

uz float

i int

w float

half

half

half

float

float

float

int

● Half-precision position (HP)
combined with constant
particle weight (CW)
drastically reduces storage
requirements and allows
more particles to fit in the
same amount of memory

● Experiments conducted on a
Power9+V100 system

● Targeting Nvidia GPUs due to
CUDA having the most complete
and convenient half-precision
support

* Operate on 128/256 bit registers only
** Support varies on implementation

Future Work

VPIC Memory Usage VPIC Execution Time

Conclusions
● Add support for CPU half precision

hardware
● Increase precision by using fixed

point particle position
● Investigate optimizations for particle

momentum

● Half precision combined with local
coordinates is a viable path for reducing
particle storage while maintaining accuracy

● Optimized particle storage enables a ~40%
increase in number of particles simulated
using the same amount of memory

● Memory usage and runtime
performance tests model
laser-plasma interactions

● Using half-precision for particle
position combined with constant
weight particles enables a
40.625% increase in particle count

● Optimized weight and position
impose minimal performance
impact

● For a sufficiently high resolution
grid, half-precision achieves
similar accuracy to original VPIC 1D problem modeling 2 particles with a known analytical

solution. Simulation space is split into 10,000 cells.

References
1. Byna, Suren, et al. "Tuning parallel i/o on blue waters for
writing 10 trillion particles." Cray User Group (CUG) (2015).
2. https://www.volkerschatz.com/science/float.html

Vector Particle-In-Cell (VPIC)

Motivation

VPIC info and
repository

GCLab
information

93.4%

VPIC Particle Structure = 1 byte

Ly

dx

dy

Hy

Hx

Lx

dx

dy

Hy

Hx

Ly

Lx

(i,j)

R
el

at
iv

e
E

rr
or

Timestep

Particle Position Relative ErrorAccumulate
currents

Advance
particles

Advance
EM fields

Interpolate
fields

Start

End

Memory usage of key VPIC structures using
a test problem with 317,030,400 particles.

Acknowledgements
Work performed under the auspices of the U.S. Department of Energy by the Triad
National Security, LLC Los Alamos National Laboratory for the DOE’s National Nuclear
Security Administration (Contract No. 89233218CNA000001). Support provided by the
Advanced Simulation and Computing Program.

Contributions:

dx

dy

dz

ux

uy

uz

i

w

Default
(VPIC)

Develop optimizations to VPICs particle storage format that reduces particle memory usage by up to
31.25% and enables an increase in particle count by up to 40%

Demonstrate that our optimizations enable significantly larger
simulations and produce accurate scientific results

Each particle
stores its own
weight as float

Each particle
stores its own
weight as float

Store weight as multiple of a
known base value unique to

each species of particles

Use a constant weight
for all particles of the

same species

LA-UR-20-25988

