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&' - Enabling Graph-Based Profiling Analysis using Hatchet

- Profiling is a way to measure the performance of che and how Augment Hatchet to enable analysis using the relational Our graph-based filtering query language Initial Graph
code runs on systems in hlgh?performance computing (HPC) | data collected by HPC profilers: consists of: @
’ rl\]lumerous tO(c)jIS fo}f HPC progllng (Ie-S- TAUI' Caliper, HPCToolkit) - Design a new graph-based filtering query language to enable the  « User Input: A Query Path represented as Query
ave custom atfa ormat an anq yS.IS tools | use of relational data collected by profilers in analysis a list of abstract graph nodes @ rvere [
« Users are locked into types of analysis dictated by the provided tools . Integrate the graph query language into Hatchet analysis . Algorithm: {"name": "solvers"},
- Hatchet [1] is a new, general data analysis tool that can read HPC . Use the augmented Hatchet to analyze the performance of cead ana Jrse the User’s auery bath \ —— E;Eime": "< 50"},
profiling data from different profilers different MPI calls in HPC benchmark applications P . quety p mpi @ mpi ]
- Store the raw performance data into a pandas DataFrame @ Traditional >+ Match real nodes in the graph being l
- Represent the relational caller-callee data with a directed acyclic graph Vicualize and Analvae with HPCToolkit filtered to the abstract nodes in the
: - 2 ! query path psm2 @
Hatchet users to table-based analysis of the raw HPCToolkit y
verformance data HPCToolkit Database - Collect all graph paths that match the Filtered Graph

Hatchet analysis of the relational data collected [l g Read into lyze with tull query path solvers ”
i An.iaytci;'t - Create a new graph containing only the @ @

by HPC profilers Figure 1: HPCToolkit workflow using GraphFrame
traditional analysis tools and Hatchet

Case Study: Application to MPI Benchmarks

nodes in the matched paths Figure 2: Example of filtering a graph using the new query language
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. Using the query language and Hatchet, we were
3a. Calculate Percent MPI Time for each MPI FunctionT 4. Identify Slow-Down Causes? :
. Collect Data able to:
» Run each of the following AMG2013 Kripke Lammps Zoom into specific benchmarks (e.g. . Extract all call paths specific to a given librar
benchmarks with o o o o AMG2013) and examine the children of . g SIVEN / .
K T T U B~ S - L O A O T - I - _ * Determine the performance contributions of function
MVAPICH2 (M) and IR o8 2B g R 2 E T BRE R R N specific MPI Functions (e.g. MPI_Allgather)| < ised by these libraries
_ i | - — | | H B : : e
Spectrum-MPI (S) using 64, : 2 z I O R R I * Correlate children function calls to specific important
128, 256, and 5.12 MPI = 80 - 80 - 80 o hA 2 3 2k ¢4IR @ library API calls in an application
(a9 — (@) — o — (@) — . . . . .
ra.nksl and proflle the runs = 4 Z 60 Z 60 = 100 * Use this correlation to determine children function calls
with HPCToolkit e 2 o S a0 that contribute the most to the performance of the
40 40 0 .
- AMG2013 S % g é:o targeted library API call
. Q Q ] . .
- Kripke & 20 & 20 % 20 _ 60 * Compare the correlation of children and API calls across
- Lammps ; ; ; = 40 libraries to determine possible causes for performance
. "M S M S M S "M S M S M S M S "M S M S M S M S © -
Load the generated 64 128 256 64 128 256 512 64 128 256 512 E 5 differences
prOflles into Hatchet Number of MPI Ranks Number of MPI Ranks Number of MPI Ranks =
- i & 0 :
Perform’the benchmarking | _ | Mos 556 51 In our tests with MVAPICH2 and Spectrum-MPI, we
on LLNL's Lassen 3b. Calculate Percent MPI Time for Child Calls of MPI Functions¥ Nt oot learn that:
umper o dNKS .
supercomputer AMG2013 Kripke Lammps : s :
" " " " * The pthread _spin_lock function is consistently one of
5 E @ 9w Hnom gy @ X2 S5 3 OR @ |9 @ 1w © o ¥ _MPI Function Calls the most impactful in the performance on MPI functions
. extract MPI Layer 1002 & | ~ | 4 5 o 1008 2 & |8 o o 100 ©O O | -+ H| N S | m m MPI_Finalize MPI_Send for both libraries
- MPI Allred MPI Wait .
* Filter the call graphs to £ "0 £ o0 £ "0 MPI_AIIrth:: — V‘Vai:;ny * In AMG2013, the worse performance of MPI_Allgather in
get subgraphs rooted at - - - MPI Waitall MPI_Alltoallv Spectrum-MPI can possibly be attributed to
standard MPI function % 60 % 60 % 60 MPI_Testany Remaining MPI Time pthread_spin_lock
calls S 40 S 40 € 40 : :
O O O Child Function Calls
° Query Path Used to o 20/ a 201 o 20 <unknown file> [libopen-pal.s0.3.1.0]:0 <unknown file> [libmIx5.50.1.0.0]:1133 <unknown file> [libmIx5.50.1.0.0]:0
extract |V|P| Layer: <unknown file> [libpami.s0.3.1.0]:0 pthread_spin_lock.c:26 syscall-template.S:81
[{,,name,,. ,,P?MPI *,,} ,,*,,] 0 M S M S M S M S 0 M S M S M S M S O M S M S M S M S syscall-template.S:82 pml|_pami_send.c:0 pml|_pami_init.c:0
) : —* 4 64 128 256 512 64 128 256 512 64 128 256 512 cancellation.c:81 memset.S:1133 Geometry.h:0
Number of MPI Ranks Number of MPI Ranks Number of MPI Ranks stl_vector.h:0 malloc.c:0 Remaining MPI Time
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