
Enabling Graph-Based Profiling Analysis using Hatchet

• Profiling is a way to measure the performance of code and how 
code runs on systems in high-performance computing (HPC)

• Numerous tools for HPC profiling (e.g. TAU, Caliper, HPCToolkit) 
have custom data format and analysis tools
• Users are locked into types of analysis dictated by the provided tools

• Hatchet [1] is a new, general data analysis tool that can read HPC 
profiling data from different profilers
• Store the raw performance data into a pandas DataFrame
• Represent the relational caller-callee data with a directed acyclic graph

1. Collect Data
• Run each of the following 

benchmarks with 
MVAPICH2 (M) and 
Spectrum-MPI (S) using 64, 
128, 256, and 512 MPI 
ranks, and profile the runs 
with HPCToolkit
• AMG2013
• Kripke
• Lammps

• Load the generated 
profiles into Hatchet

• Perform the benchmarking 
on LLNL’s Lassen 
supercomputer

Student: Ian Lumsden1

Mentors: Stephanie Brink2, Michael R. Wyatt II1, Todd Gamblin2 , Michela Taufer1

References
[1] A. Bhatele et al. 2019. 

Hatchet: Pruning the 
Overgrowth in Parallel 
Profiles. In Proc. of SC19

Introduction

Augment Hatchet to enable analysis using the relational 
data collected by HPC profilers:
• Design a new graph-based filtering query language to enable the 

use of relational data collected by profilers in analysis
• Integrate the graph query language into Hatchet analysis
• Use the augmented Hatchet to analyze the performance of 

different MPI calls in HPC benchmark applications

Research Goals

Lessons LearnedCase Study: Application to MPI Benchmarks

Sponsors:

1 Department of Electrical Engineering and Computer 
Science, University of Tennessee, Knoxville, TN, USA
2 Center for Applied Scientific Computing, Lawrence 
Livermore National Laboratory, Livermore, CA, USA

• Hatchet restricts users to table-based analysis of the raw 
performance data

• Hatchet does NOT support analysis of the relational data collected 
by HPC profilers

Methods

Our graph-based filtering query language 
consists of:
• User Input: A Query Path represented as 

a list of abstract graph nodes
• Algorithm:

• Read and parse the user’s query path
• Match real nodes in the graph being 

filtered to the abstract nodes in the 
query path

• Collect all graph paths that match the 
full query path

• Create a new graph containing only the 
nodes in the matched paths

Traditional

Hatchet

2. Extract MPI Layer
• Filter the call graphs to 

get subgraphs rooted at 
standard MPI function 
calls

• Query Path used to 
extract MPI Layer:

[{“name”: “P?MPI_.*”}, “*”]

MPI Function Calls
MPI_Finalize MPI_Send

MPI_Allreduce MPI_Wait

MPI_Allgather MPI_Waitany

MPI_Waitall MPI_Alltoallv

MPI_Testany Remaining MPI Time

Child Function Calls
<unknown file> [libopen-pal.so.3.1.0]:0 <unknown file> [libmlx5.so.1.0.0]:1133 <unknown file> [libmlx5.so.1.0.0]:0

<unknown file> [libpami.so.3.1.0]:0 pthread_spin_lock.c:26 syscall-template.S:81

syscall-template.S:82 pml_pami_send.c:0 pml_pami_init.c:0

cancellation.c:81 memset.S:1133 Geometry.h:0

stl_vector.h:0 malloc.c:0 Remaining MPI Time

3a. Calculate Percent MPI Time for each MPI Function†

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I T

im
e

AMG2013

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I T

im
e

Kripke

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I T

im
e

Lammps

3b. Calculate Percent MPI Time for Child Calls of MPI Functions‡

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I T

im
e

AMG2013

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I T

im
e

Kripke

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I T

im
e

Lammps

4. Identify Slow-Down Causes‡
Zoom into specific benchmarks (e.g. 
AMG2013) and examine the children of 
specific MPI Functions (e.g. MPI_Allgather)

Number of MPI Ranks

P
er

ce
n

t 
o

f 
M

P
I_

A
llg

at
h

er
Ti

m
e

This work performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344.

Using the query language and Hatchet, we were 
able to:

• Extract all call paths specific to a given library
• Determine the performance contributions of function 

calls used by these libraries
• Correlate children function calls to specific important 

library API calls in an application
• Use this correlation to determine children function calls 

that contribute the most to the performance of the 
targeted library API call

• Compare the correlation of children and API calls across 
libraries to determine possible causes for performance 
differences

In our tests with MVAPICH2 and Spectrum-MPI, we 
learn that:

• The pthread_spin_lock function is consistently one of 
the most impactful in the performance on MPI functions 
for both libraries

• In AMG2013, the worse performance of MPI_Allgather in 
Spectrum-MPI can possibly be attributed to 
pthread_spin_lock

Release Number: LLNL-POST-812963

Figure 2: Example of filtering a graph using the new query language

Initial Graph

Query

Filtered Graph

Read into 
Hatchet 

GraphFrame

Analyze with 
Hatchet

HPCToolkit
HPCToolkit
Database

Visualize and Analyze with HPCToolkit

Figure 1: HPCToolkit workflow using 
traditional analysis tools and Hatchet

Hatchet

Traditional

GCLab Website:† “Remaining MPI Time” consists of all MPI functions 
that contribute less than 5% of the overall MPI runtime.

‡ “Remaining MPI Time” consists of all child functions 
that contribute less than 10% of the overall MPI 
runtime.


