Optimizing Vector Particle-In-Cell (VPIC) for Memory Constrained Systems Using **Half-Precision Student: Nigel Tan** Mentors: Robert Bird, Michela Taufer GCL s Alamos NATIONAL LABORATORY KNOXVIIIF UNIVERSITY OF TENNESSEE **BIG ORANGE, BIG IDEAS.**[®] EST.1943

Scaling Particle Simulations

0.374 Pflop/s Trillion-Particle Kinetic Modeling of Laser Plasma Interaction on Roadrunner

K. J. Bowers, *Member, IEEE*, B. J. Albright, *Member, IEEE*, B. Bergen, *Member, IEEE*, L. Yin, K. J. Barker and D. J. Kerbyson, *Member, IEEE*

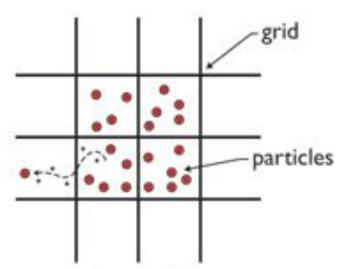
2 trillion particles = 64 TB (2008) Tuning Parallel I/O on Blue Waters for Writing 10 Trillion Particles

Surendra Byna*, Robert Sisneros†, Kalyana Chadalavada†, and Quincey Koziol‡

10 trillion particles = 320 TB (2015)

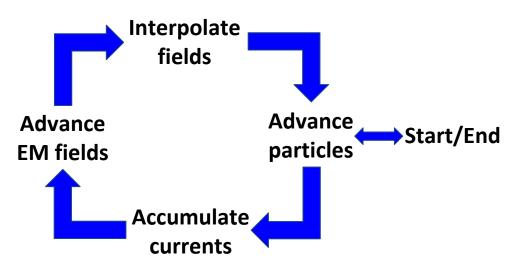
- Simulation scale more limited by memory than compute
- Accelerators add more memory constraints
 - Max CPU memory: **4TB**, Max GPU memory: **48GB**
 - PCIe 4.0 x16 Bandwidth: **32 GB/s** in one direction

(left) Bowers, Kevin J., et al. "0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on Roadrunner." SC'08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE, 2008. (right) Byna, Suren, et al. "Tuning parallel i/o on blue waters for writing 10 trillion particles." Cray User Group (CUG) (2015).



Vector Particle-In-Cell (VPIC)

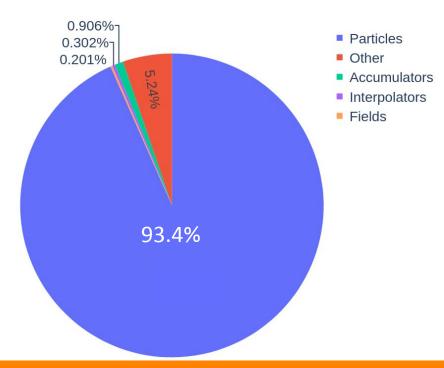
- High performance particle-in-cell code for plasma simulations:
 - Simulates magnetic reconnection, fusion, solar weather, and particle acceleration amongst other plasma phenomenon
 - One of the fastest plasma codes in the world
 - Is well optimized for modern CPUs
 - Was **NOT** optimized for accelerators (e.g., GPUs)



VPIC Algorithm

Spatial domain: Particles are distributed across an n-D space that is decomposed into a n-D grid

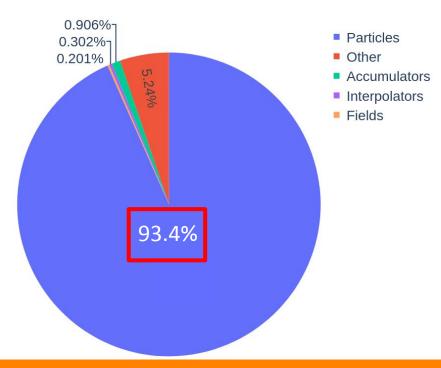
Iterative process: Four key steps define a VPIC iteration



Particle Storage

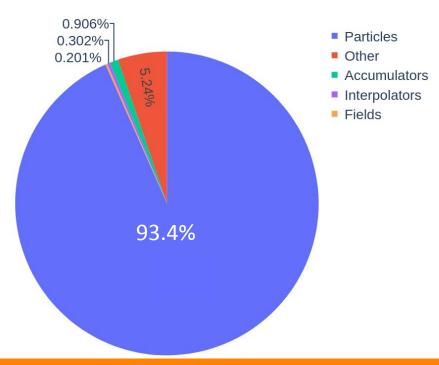
 The larger the number of particles, the more physically accurate the simulations and the greater the memory usage

```
struct particle {
  float dx, dy, dz; // Position
  int i; // Cell index
  float ux, uy, uz; // Momentum
  float w; // Weight
};
```



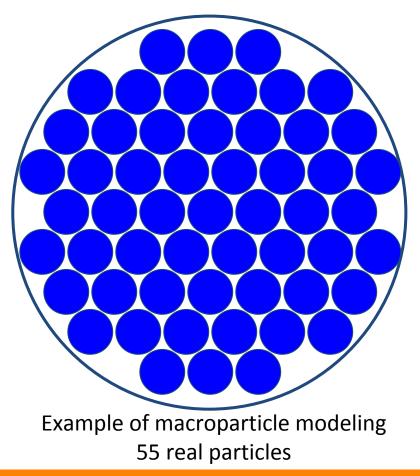
Particle Storage

 The larger the number of particles, the more physically accurate the simulations and the greater the memory usage


```
struct particle {
  float dx, dy, dz; // Position
  int i; // Cell index
  float ux, uy, uz; // Momentum
  float w; // Weight
};
```


Particle Storage: Weight

• The larger the number of particles, the more physically accurate the simulations and the greater the memory usage


```
struct particle {
  float dx, dy, dz; // Position
  int i; // Cell index
  float ux, uy, uz; // Momentum
  float w; // Weight
};
```


Particle Weight

- Each simulated particle is a macroparticle
- Weight defines the number of real particles modeled by each macroparticle
- Weight generally does not change during a simulation

Optimizing Particle Weight Storage (I)

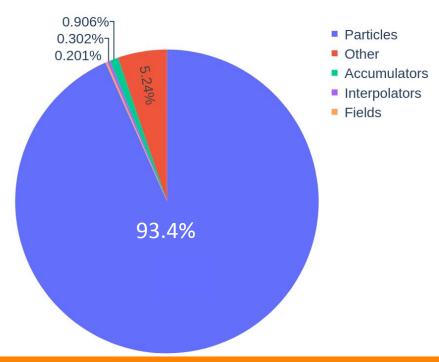
- Assume particle weights may vary but have a limited range of values
 - Weights have a common divisor
- uy Replace weight with 16-bit short integer uΖ (SW) i
- Reduce particle memory usage by at most 6.25% over default VPIC

= 1 byte dx dy dz ux Single Precision Short Weight Weight SW

W

Optimizing Particle Weight Storage (II)

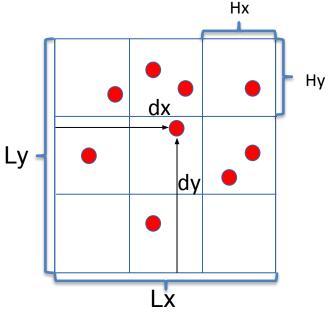
- Assume all particles in a species share the same constant weight (CW)
- Remove weight field and use a per species constant weight
- Reduce particle storage cost by at most **12.5%** over default VPIC



Particle Storage: Position

• The larger the number of particles, the more physically accurate the simulations and the greater the memory usage

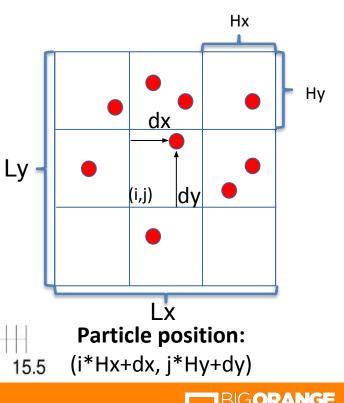
<pre>struct particle {</pre>									
		float	dx,	dy,	dz;	//	Posit	tion	
		int i;				//	Cell	ind	ex
		float	ux,	uy,	uz;	//	Momen	ntum	
		float	W;			//	Weigł	nt	
	};								



Particle Position: Global Coordinates

- Traditional global coordinates:
 - Derive cell index based on global position
- **Problem:** Uneven floating point intervals
 - Coordinates of particles away from
 0.0 are less precise

Particle position: (dx, dy)

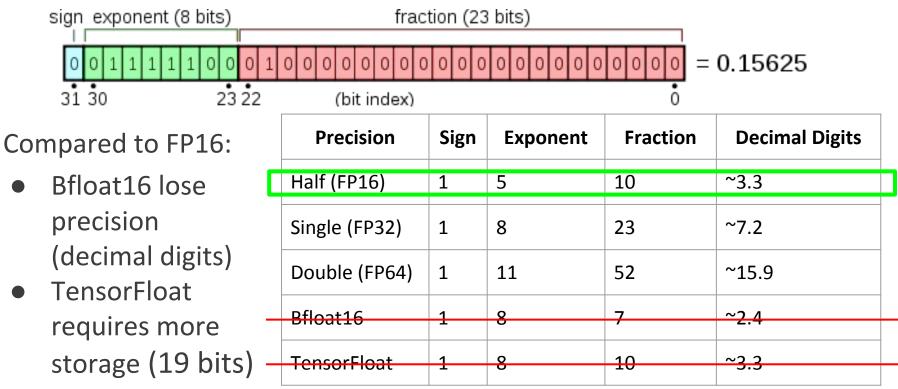

Particle Position: Local Coordinates

• Local coordinates:

-8

- Derive particle position based on cell index and position within a cell
- Advantages: More floating-point values that are more evenly dispersed
 - Enable lower precision with similar accuracy on a high resolution grid

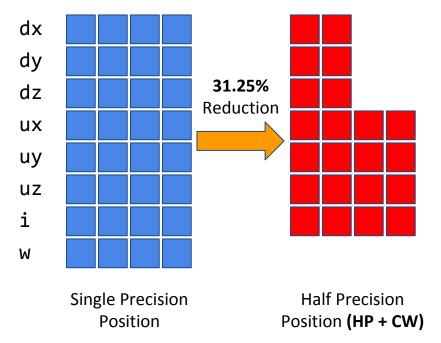
-1 -05 0 05 1



8

-15.5

Floating Point Format

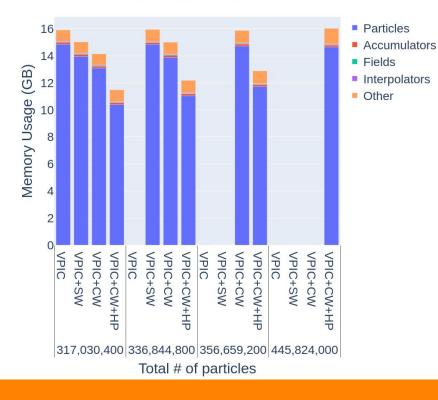

Half-Precision Particle Position

Position (HP)

dx dy 18.75% dz Reduction uх uy uz i W Single Precision Half Precision

Half Precision Position

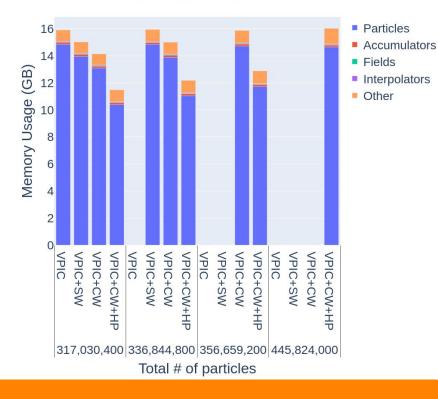
Half Precision Position + Constant Weight



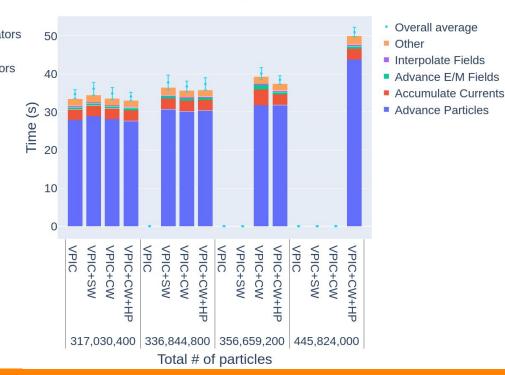
Position

Results: Memory Usage and Runtime

VPIC Memory Usage Comparison



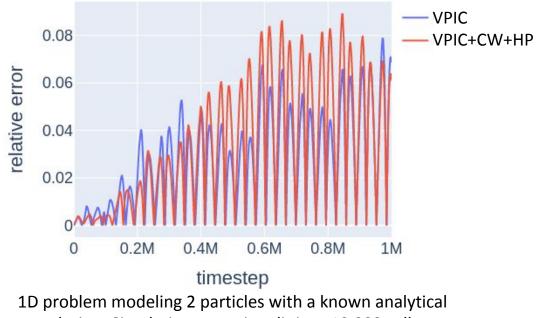
- Laser-Plasma interaction simulation
 - Missing bars indicate out of memory
 - Optimizations enable up to 40% increase in number of particles



Results: Memory Usage and Runtime

VPIC Memory Usage Comparison

VPIC Execution Time Comparison



BIG ORANGE BIG IDEAS

Results: Accuracy

Particle position relative error

- Perform as well as the original single precision VPIC with a sufficiently fine grid
- Weight kept constant and does not affect overall accuracy

solution. Simulation space is split into 10,000 cells.

Conclusions

- Our optimizations enable an up to 40% increase in particle count
- Maintain VPICs high performance
- Produce scientifically accurate results
- Demonstrate the potential in lower precision storage in scientific applications

Next Steps

- Add half-precision support for CPUs
- Investigate alternative formats for position
- Develop model for automatically determining whether to use half-precision based on simulation settings
- Develop optimizations for particle momentum

