
Optimizing Vector Particle-In-Cell (VPIC)
for Memory Constrained Systems Using

Half-Precision
Student: Nigel Tan

Mentors: Robert Bird, Michela Taufer

Scaling Particle Simulations

2

10 trillion particles = 320 TB
(2015)

2 trillion particles = 64 TB
(2008)

(left) Bowers, Kevin J., et al. "0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on Roadrunner." SC'08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE, 2008.
(right) Byna, Suren, et al. "Tuning parallel i/o on blue waters for writing 10 trillion particles." Cray User Group (CUG) (2015).

● Simulation scale more limited by memory than compute
● Accelerators add more memory constraints

○ Max CPU memory: 4TB, Max GPU memory: 48GB
○ PCIe 4.0 x16 Bandwidth: 32 GB/s in one direction

Vector Particle-In-Cell (VPIC)

• High performance particle-in-cell code for plasma simulations:

▪ Simulates magnetic reconnection, fusion, solar weather,
and particle acceleration amongst other plasma
phenomenon

▪ One of the fastest plasma codes in the world

▪ Is well optimized for modern CPUs

▪ Was NOT optimized for accelerators (e.g., GPUs)

3

VPIC Algorithm

Spatial domain: Particles are distributed
across an n-D space that is decomposed
into a n-D grid

4

Iterative process: Four key
steps define a VPIC iteration

Accumulate
currents

Advance
particles

Advance
EM fields

Interpolate
fields

Start/End

5

Particle Storage

struct particle {

 float dx, dy, dz; // Position

 int i; // Cell index

 float ux, uy, uz; // Momentum

 float w; // Weight

};

● The larger the number of
particles, the more physically
accurate the simulations and the
greater the memory usage

93.4%

6

Particle Storage

struct particle {

 float dx, dy, dz; // Position

 int i; // Cell index

 float ux, uy, uz; // Momentum

 float w; // Weight

};

● The larger the number of
particles, the more physically
accurate the simulations and the
greater the memory usage

93.4%

7

Particle Storage: Weight

struct particle {

 float dx, dy, dz; // Position

 int i; // Cell index

 float ux, uy, uz; // Momentum

 float w; // Weight

};

● The larger the number of
particles, the more physically
accurate the simulations and the
greater the memory usage

93.4%

Particle Weight

• Each simulated particle is a
macroparticle

• Weight defines the number of

real particles modeled by each
macroparticle

• Weight generally does not
change during a simulation

8

Example of macroparticle modeling
55 real particles

Optimizing Particle Weight Storage (I)

• Assume particle weights may vary but
have a limited range of values

▪ Weights have a common divisor

• Replace weight with 16-bit short integer

(SW)

• Reduce particle memory usage by at
most 6.25% over default VPIC

9

dx

dy

dz

ux

uy

uz

i

w

Single Precision
Weight

Short Weight
SW

= 1 byte

Optimizing Particle Weight Storage (II)

• Assume all particles in a species
share the same constant weight
(CW)

• Remove weight field and use a per

species constant weight

• Reduce particle storage cost by at
most 12.5% over default VPIC

10

dx

dy

dz

ux

uy

uz

i

w

Single Precision
Weight

Constant
Weight CW

11

Particle Storage: Position

struct particle {

 float dx, dy, dz; // Position

 int i; // Cell index

 float ux, uy, uz; // Momentum

 float w; // Weight

};

● The larger the number of
particles, the more physically
accurate the simulations and the
greater the memory usage

93.4%

Particle Position: Global Coordinates

• Traditional global coordinates:
▪ Derive cell index based on global

position

• Problem: Uneven floating point

intervals
▪ Coordinates of particles away from

0.0 are less precise

12

Particle position: (dx, dy)

Ly

dx

dy

Hy

Hx

Lx

https://www.volkerschatz.com/science/float.html

Particle Position: Local Coordinates

• Local coordinates:
▪ Derive particle position based on cell

index and position within a cell

• Advantages: More floating-point

values that are more evenly dispersed
▪ Enable lower precision with similar

accuracy on a high resolution grid

13

Particle position:
(i*Hx+dx, j*Hy+dy)

dx

dy

Hy

Hx

Ly

Lx

(i,j)

14

Floating Point Format

Precision Sign Exponent Fraction Decimal Digits

Half (FP16) 1 5 10 ~3.3

Single (FP32) 1 8 23 ~7.2

Double (FP64) 1 11 52 ~15.9

Bfloat16 1 8 7 ~2.4

TensorFloat 1 8 10 ~3.3

Compared to FP16:

● Bfloat16 lose
precision
(decimal digits)

● TensorFloat
requires more
storage (19 bits)

Half-Precision Particle Position

15

dx

dy

dz

ux

uy

uz

i

w

Single Precision
Position

Half Precision
Position (HP)

18.75%
Reduction

dx

dy

dz

ux

uy

uz

i

w

Single Precision
Position

Half Precision
Position (HP + CW)

31.25%
Reduction

Half Precision Position Half Precision Position + Constant Weight

Results: Memory Usage and Runtime

16

• Laser-Plasma interaction

simulation

• Missing bars indicate out of

memory

• Optimizations enable up to

40% increase in number of
particles

Results: Memory Usage and Runtime

17

Results: Accuracy

• Perform as well as the
original single
precision VPIC with a
sufficiently fine grid

• Weight kept constant
and does not affect
overall accuracy

18

VPIC
VPIC+CW+HP

1D problem modeling 2 particles with a known analytical
solution. Simulation space is split into 10,000 cells.

https://drive.google.com/file/d/1_qOsCQPIVin43UIMux7VUPiDPyPHyHES/view?usp=sharing

Conclusions

• Our optimizations enable an up to 40% increase in particle

count

• Maintain VPICs high performance

• Produce scientifically accurate results

• Demonstrate the potential in lower precision storage in

scientific applications

19

Next Steps

• Add half-precision support for CPUs

• Investigate alternative formats for position

• Develop model for automatically determining whether to use
half-precision based on simulation settings

• Develop optimizations for particle momentum

20

