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Scaling Particle Simulations  
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10 trillion particles = 320 TB
(2015)

2 trillion particles = 64 TB
(2008)

(left) Bowers, Kevin J., et al. "0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on Roadrunner." SC'08: 
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE, 2008.
(right) Byna, Suren, et al. "Tuning parallel i/o on blue waters for writing 10 trillion particles." Cray User Group (CUG) (2015).

● Simulation scale more limited by memory than compute
● Accelerators add more memory constraints

○ Max CPU memory: 4TB, Max GPU memory: 48GB
○ PCIe 4.0 x16 Bandwidth: 32 GB/s in one direction



Vector Particle-In-Cell (VPIC)

• High performance particle-in-cell code for plasma simulations:

▪ Simulates magnetic reconnection, fusion, solar weather, 
and particle acceleration amongst other plasma 
phenomenon

▪ One of the fastest plasma codes in the world

▪ Is well optimized for modern CPUs

▪ Was NOT optimized for accelerators (e.g., GPUs)
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VPIC Algorithm 

Spatial domain: Particles are distributed 
across an n-D space that is decomposed 
into a n-D grid
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Iterative process: Four key 
steps define a VPIC iteration 

Accumulate 
currents

Advance 
particles

Advance 
EM fields

Interpolate 
fields

Start/End
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Particle Storage

struct particle {

  float dx, dy, dz; // Position

  int i;            // Cell index

  float ux, uy, uz; // Momentum

  float w;          // Weight

};

● The larger the number of 
particles, the more physically 
accurate the simulations and the 
greater the memory usage

93.4%
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Particle Storage: Weight

struct particle {

  float dx, dy, dz; // Position

  int i;            // Cell index

  float ux, uy, uz; // Momentum

  float w;          // Weight

};

● The larger the number of 
particles, the more physically 
accurate the simulations and the 
greater the memory usage

93.4%



Particle Weight

• Each simulated particle is a 
macroparticle

• Weight defines the number of 

real particles modeled by each 
macroparticle 

• Weight generally does not 
change during a simulation
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Example of macroparticle modeling 
55 real particles



Optimizing Particle Weight Storage (I)

• Assume particle weights may vary but 
have a limited range of values

▪ Weights have a common divisor 

• Replace weight with 16-bit short integer 

(SW)

• Reduce particle memory usage by at 
most 6.25% over default VPIC
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Optimizing Particle Weight Storage (II)

• Assume all particles in a species 
share the same constant weight 
(CW)

• Remove weight field and use a per 

species constant weight

• Reduce particle storage cost by at 
most 12.5% over default VPIC
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Particle Storage: Position

struct particle {

  float dx, dy, dz; // Position

  int i;            // Cell index

  float ux, uy, uz; // Momentum

  float w;          // Weight

};

● The larger the number of 
particles, the more physically 
accurate the simulations and the 
greater the memory usage

93.4%



Particle Position: Global Coordinates

• Traditional global coordinates:
▪ Derive cell index based on global 

position

• Problem: Uneven floating point 

intervals
▪ Coordinates of particles away from 

0.0 are less precise
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Particle position: (dx, dy)

Ly

dx

dy

Hy

Hx

Lx

https://www.volkerschatz.com/science/float.html



Particle Position: Local Coordinates

• Local coordinates:
▪ Derive particle position based on cell 

index and position within a cell

• Advantages: More floating-point 

values that are more evenly dispersed
▪ Enable lower precision with similar 

accuracy on a high resolution grid
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Particle position: 
(i*Hx+dx, j*Hy+dy)

dx

dy

Hy

Hx

Ly

Lx

(i,j)
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Floating Point Format

Precision Sign Exponent Fraction Decimal Digits

Half (FP16) 1 5 10 ~3.3

Single (FP32) 1 8 23 ~7.2

Double (FP64) 1 11 52 ~15.9

Bfloat16 1 8 7 ~2.4

TensorFloat 1 8 10 ~3.3

Compared to FP16:

● Bfloat16 lose 
precision 
(decimal digits)

● TensorFloat 
requires more 
storage (19 bits)



Half-Precision Particle Position
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Results: Memory Usage and Runtime
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• Laser-Plasma interaction 

simulation

• Missing bars indicate out of 

memory

• Optimizations enable up to 

40% increase in number of 
particles



Results: Memory Usage and Runtime
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Results: Accuracy

• Perform as well as the 
original single 
precision VPIC with a 
sufficiently fine grid

• Weight kept constant 
and does not affect 
overall accuracy
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VPIC
VPIC+CW+HP

1D problem modeling 2 particles with a known analytical 
solution. Simulation space is split into 10,000 cells.

https://drive.google.com/file/d/1_qOsCQPIVin43UIMux7VUPiDPyPHyHES/view?usp=sharing


Conclusions

• Our optimizations enable an up to 40% increase in particle 

count 

• Maintain VPICs high performance

• Produce scientifically accurate results

• Demonstrate the potential in lower precision storage in 

scientific applications
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Next Steps

• Add half-precision support for CPUs

• Investigate alternative formats for position

• Develop model for automatically determining whether to use 
half-precision based on simulation settings

• Develop optimizations for particle momentum
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