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• Profiler output uses a 

custom, unique data 

format

• Visualization and analysis 

tools are GUI-based with 

limited analysis 

capabilities

• Both issues above limit 

user analysis options



Hatchet

• Python-based library

• A new, general data analysis tool that can read HPC profiling data 

from different profilers

• Store the raw performance data into a pandas DataFrame

• Represent the relational caller-callee data with directed acyclic graph 

(DAG)
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Hatchet

• Python-based library

• A new, general data analysis tool that can read HPC profiling data 
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• Store the raw performance data into a pandas DataFrame
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• Hatchet restricts users to table-based analysis of the raw performance 
data

• Hatchet does NOT support analysis of the relational data collected by HPC 
profilers



Research Goals

• Design new graph-based filtering query language to enable 

the use of relational data collected by profilers in analysis

• Implement this query language and integrate it into Hatchet 

analysis

• Use the augmented Hatchet to analyze the performance of 

different MPI calls in HPC benchmark applications
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Hatchet Query Language

• Filter nodes in a graph using a user-provided path pattern (called a 

query path)

• User Input:

• A Query Path represented as a list of abstract graph nodes

• Two parts to an abstract graph node:

1. A wildcard specifying the number of real graph nodes to match to the abstract 

graph node (default is 1)

2. A filter used to determine whether a real graph node matches the abstract 

graph node (default is an “always true” filter)
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Hatchet Query Language

• Algorithm:

1. Read and parse the user’s query path

2. Match real nodes in the graph being filtered to the abstract nodes in 

the query path

3. Collect all graph paths that match the full query path

4. Create a new graph (GraphFrame) containing only the nodes in the 

matched paths
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Research Goals

• Design new graph-based filtering query language to enable 

the use of relational data collected by profilers in analysis

• Implement this query language and integrate it into 

Hatchet analysis

• Use the augmented Hatchet to analyze the performance of 

different MPI calls in HPC benchmark applications
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Hatchet Query Language: APIs
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Low-Level API

High-Level API

Interface:

Chained Function 

Calls

Interface:

Built-in Python 

Data Types

Filters:

Bool-Returning 

Callables

Wildcards:

“.”, “+”, “*”, or 

Int

Wildcards:

“.”, “+”, “*”, or 

Int

Filters:

Node Attribute-

Keyed Dict

GraphFrame.filter

Function
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23



Hatchet Query Language: Example

24



Hatchet Query Language: Example

25



Publicly available starting with

Hatchet v1.2.0
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Research Goals

• Design new graph-based filtering query language to enable 

the use of relational data collected by profilers in analysis

• Implement this query language and integrate it into Hatchet 

analysis

• Use the augmented Hatchet to analyze the 

performance of different MPI calls in HPC benchmark 

applications
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Case Study: Collect Data

• Run each of the following benchmarks with MVAPICH 

(M) and Spectrum-MPI (S) using 64, 128, 256, and 512 

MPI ranks, and profile the runs with HPCToolkit

• AMG2013

• Kripke

• Lammps

• Load the generated profiles into Hatchet
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Case Study: Collect Data

• Perform the benchmarking on 

LLNL’s Lassen supercomputer

• LLNL CZ (Public Collaboration) 

CORAL Supercomputer

• 795 AC922 Nodes

• 2 IBM Power9 CPUs per node (20 

cores per node)

• 256 GB Memory per node

• Infiniband EDR interconnect
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Case Study: Extract MPI Layer

• Filter the call graphs to get subgraphs rooted at 

standard MPI function calls

• Query Path used to extract MPI Layer:

[{“name”: “P?MPI_.*”}, “*”]
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Case Study: Identify Slow-Down Causes
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Lessons Learned: MPI
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Lessons Learned: Hatchet

• Using the query language and Hatchet, we are able to:

• Extract all call paths specific to a given library

• Determine the performance contributions of function calls used by 

these libraries

• Correlate children function calls to specific important library API calls 

in an application

• Use this correlation to determine children function calls that 

contribute the most to the performance of the targeted library API call

• Compare the correlation of children and API calls across libraries to 

determine possible causes for performance differences
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Future Work

• Use and expand on the techniques and tools from this 

work to study large scale scalability and replicability 

problems

• Use information gained from studying these problems to propose 

mitigation strategies

• Develop tools to help others study and mitigate these problems
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Additional Resources on Hatchet
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Hatchet SC19 Paper Hatchet GitHubHatchet SC20 Paper
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Case Study: Benchmarks

• Kripke (LLNL) [5]

• Mini-App Benchmark

• Deterministic

• Runs SN Neutron Transport simulation
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Case Study: Benchmarks

• Lammps (SNL) [6]

• Popular classical molecular dynamics simulator

• Also contains a set of benchmarks
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Case Study: Benchmarks

• AMG2013 (LLNL) [7]

• Parallel algebraic multigrid solver for linear systems

• Proxy App for hypre’s BoomerAMG solver

• Highly synchronous code
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Case Study: MPIs

• MVAPICH (v2.3.3)

• Project led by the Network-Based Computing Laboratory at Ohio 

State University

• Based on MPICH (Argonne National Lab)

• Conforms with MPI 3.1 standard
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Case Study: MPIs

• Spectrum-MPI (v10.2)

• Created by IBM

• Based on OpenMPI (first created by LANL, Indiana University, 

and the University of Tennessee)

• Conforms with MPI 3.1 standard
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