
Enabling Graph-Based Profiling 

Analysis using Hatchet
Student: Ian Lumsden

Mentors: Stephanie Brink, Michael R. Wyatt II, Todd Gamblin, 
and Michela Taufer

LLNL-PRES-815496

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 

Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



Limits of HPC Profilers: HPCToolkit

HPC

Application

2
[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 

Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701



Limits of HPC Profilers: HPCToolkit

Analyze 
Execution
(hpcrun)

Analyze Binary
(hpcstruct)

Call Path 

Profile

Program 

Structure

3
[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 

Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701

HPC

Application



Limits of HPC Profilers: HPCToolkit

Analyze 
Execution
(hpcrun)

Analyze Binary
(hpcstruct)

Call Path 

Profile

Program 

Structure

Interpret profile and 
correlate w/ source 

(hpcprof/
hpcprof-mpi)

HPCToolkit

Database

4
[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 

Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701

HPC

Application



Limits of HPC Profilers: HPCToolkit

Analyze 
Execution
(hpcrun)

Analyze Binary
(hpcstruct)

Call Path 

Profile

Program 

Structure

Interpret profile and 
correlate w/ source 

(hpcprof/
hpcprof-mpi)

HPCToolkit

Database

Visualize and 
Analyze

(hpcviewer/
hpctraceviewer)

5
[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 

Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701

HPC

Application



Limits of HPC Profilers: HPCToolkit

Analyze 
Execution
(hpcrun)

Analyze Binary
(hpcstruct)

Call Path 

Profile

Program 

Structure

Interpret profile and 
correlate w/ source 

(hpcprof/
hpcprof-mpi)

HPCToolkit

Database

Visualize and 
Analyze

(hpcviewer/
hpctraceviewer)

6
[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 

Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701

HPC

Application



Limits of HPC Profilers: HPCToolkit

HPCToolkit

Database

Visualize and 
Analyze

(hpcviewer/
hpctraceviewer)

7
[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 

Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701

• Profiler output uses a 

custom, unique data 

format

• Visualization and analysis 

tools are GUI-based with 

limited analysis 

capabilities

• Both issues above limit 

user analysis options



Hatchet

• Python-based library

• A new, general data analysis tool that can read HPC profiling data 

from different profilers

• Store the raw performance data into a pandas DataFrame

• Represent the relational caller-callee data with directed acyclic graph 

(DAG)

8
[1] A. Bhatele, S. Brink, and T. Gamblin. 2019. Hatchet: Pruning the Overgrowth in Parallel Profiles. In Proc. of the International 

Conference of High Performance Computing, Networking, Storage, and Analysis (SC19).



Hatchet

• Python-based library

• A new, general data analysis tool that can read HPC profiling data 

from different profilers

• Store the raw performance data into a pandas DataFrame

• Represent the relational caller-callee data with directed acyclic graph 

(DAG)

9
[1] A. Bhatele, S. Brink, and T. Gamblin. 2019. Hatchet: Pruning the Overgrowth in Parallel Profiles. In Proc. of the International 

Conference of High Performance Computing, Networking, Storage, and Analysis (SC19).

GraphFrame



HPCToolkit with Hatchet

Application 

Binary

Analyze 
Execution
(hpcrun)

Analyze Binary
(hpcstruct)

Call Path 

Profile

Program 

Structure

Interpret profile and 
correlate w/ source 

(hpcprof/
hpcprof-mpi)

Database

10

Visualize and 
Analyze

(hpcviewer/
hpctraceviewer)

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. Tallent. 2010. HPCToolkit: Tools for Performance 
Analysis of Optimized Parallel Programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 285-701



HPCToolkit with Hatchet

Application 

Binary

Analyze 
Execution
(hpcrun)

Analyze Binary
(hpcstruct)

Call Path 

Profile

Program 

Structure

Interpret profile and 
correlate w/ source 

(hpcprof/
hpcprof-mpi)

Database

11

Read into 
Hatchet 

GraphFrame

Analyze with 
Hatchet

Hatchet



Hatchet

• Python-based library

• A new, general data analysis tool that can read HPC profiling data 

from different profilers

• Store the raw performance data into a pandas DataFrame

• Represent the relational caller-callee data with directed acyclic graph 

(DAG)

12
[1] A. Bhatele, S. Brink, and T. Gamblin. 2019. Hatchet: Pruning the Overgrowth in Parallel Profiles. In Proc. of the International 

Conference of High Performance Computing, Networking, Storage, and Analysis (SC19).

• Hatchet restricts users to table-based analysis of the raw performance 
data

• Hatchet does NOT support analysis of the relational data collected by HPC 
profilers



Research Goals

• Design new graph-based filtering query language to enable 

the use of relational data collected by profilers in analysis

• Implement this query language and integrate it into Hatchet 

analysis

• Use the augmented Hatchet to analyze the performance of 

different MPI calls in HPC benchmark applications

13



Research Goals

• Design new graph-based filtering query language to 

enable the use of relational data collected by profilers 

in analysis

• Implement this query language and integrate it into Hatchet 

analysis

• Use the augmented Hatchet to analyze the performance of 

different MPI calls in HPC benchmark applications

14



Hatchet Query Language

• Filter nodes in a graph using a user-provided path pattern (called a 

query path)

15



Hatchet Query Language

• Filter nodes in a graph using a user-provided path pattern (called a 

query path)

• User Input:

• A Query Path represented as a list of abstract graph nodes

16



Hatchet Query Language

• Filter nodes in a graph using a user-provided path pattern (called a 

query path)

• User Input:

• A Query Path represented as a list of abstract graph nodes

• Two parts to an abstract graph node:

17



Hatchet Query Language

• Filter nodes in a graph using a user-provided path pattern (called a 

query path)

• User Input:

• A Query Path represented as a list of abstract graph nodes

• Two parts to an abstract graph node:

1. A wildcard specifying the number of real graph nodes to match to the abstract 

graph node (default is 1)

18



Hatchet Query Language

• Filter nodes in a graph using a user-provided path pattern (called a 

query path)

• User Input:

• A Query Path represented as a list of abstract graph nodes

• Two parts to an abstract graph node:

1. A wildcard specifying the number of real graph nodes to match to the abstract 

graph node (default is 1)

2. A filter used to determine whether a real graph node matches the abstract 

graph node (default is an “always true” filter)

19



Hatchet Query Language

• Algorithm:

1. Read and parse the user’s query path

2. Match real nodes in the graph being filtered to the abstract nodes in 

the query path

3. Collect all graph paths that match the full query path

4. Create a new graph (GraphFrame) containing only the nodes in the 

matched paths

20



Research Goals

• Design new graph-based filtering query language to enable 

the use of relational data collected by profilers in analysis

• Implement this query language and integrate it into 

Hatchet analysis

• Use the augmented Hatchet to analyze the performance of 

different MPI calls in HPC benchmark applications

21



Hatchet Query Language: APIs

22

Low-Level API

High-Level API

Interface:

Chained Function 

Calls

Interface:

Built-in Python 

Data Types

Filters:

Bool-Returning 

Callables

Wildcards:

“.”, “+”, “*”, or 

Int

Wildcards:

“.”, “+”, “*”, or 

Int

Filters:

Node Attribute-

Keyed Dict

GraphFrame.filter

Function



Hatchet Query Language: Example

23



Hatchet Query Language: Example

24



Hatchet Query Language: Example

25



Publicly available starting with

Hatchet v1.2.0

26



Research Goals

• Design new graph-based filtering query language to enable 

the use of relational data collected by profilers in analysis

• Implement this query language and integrate it into Hatchet 

analysis

• Use the augmented Hatchet to analyze the 

performance of different MPI calls in HPC benchmark 

applications

27



Case Study: Collect Data

• Run each of the following benchmarks with MVAPICH 

(M) and Spectrum-MPI (S) using 64, 128, 256, and 512 

MPI ranks, and profile the runs with HPCToolkit

• AMG2013

• Kripke

• Lammps

• Load the generated profiles into Hatchet

28



Case Study: Collect Data

• Perform the benchmarking on 

LLNL’s Lassen supercomputer

• LLNL CZ (Public Collaboration) 

CORAL Supercomputer

• 795 AC922 Nodes

• 2 IBM Power9 CPUs per node (20 

cores per node)

• 256 GB Memory per node

• Infiniband EDR interconnect

29



Case Study: Extract MPI Layer

• Filter the call graphs to get subgraphs rooted at 

standard MPI function calls

• Query Path used to extract MPI Layer:

[{“name”: “P?MPI_.*”}, “*”]

30



Case Study: Calculate Percent MPI Time for 

each MPI Function

31

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG2013

Only MPI functions that 

contribute at least 5% of total 

MPI time are shown

MPI Function Calls

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time



Case Study: Calculate Percent MPI Time for 

each MPI Function

32

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG2013

Only MPI functions that 

contribute at least 5% of total 

MPI time are shown

MPI Function Calls

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time



Case Study: Calculate Percent MPI Time for 

each MPI Function

33

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG2013

Only MPI functions that 

contribute at least 5% of total 

MPI time are shown

MPI Function Calls

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time



Case Study: Calculate Percent MPI Time for 

Child Calls of MPI Functions

34

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG2013

Only children functions that 

contribute at least 10% of total MPI 

time are shown

Child Function Calls

<unknown file> 

[libmlx5.so.1.0.0]:0

<unknown file> 

[libmlx5.so.1.0.0]:1133

pthread_spin_lock.c:26 memset.S:1133

malloc.c:0 Geometry.h:0

stl_vector.h:0 Remaining MPI Time



Case Study: Calculate Percent MPI Time for 

Child Calls of MPI Functions

35

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG2013

Only children functions that 

contribute at least 10% of total MPI 

time are shown

Child Function Calls

<unknown file> 

[libmlx5.so.1.0.0]:0

<unknown file> 

[libmlx5.so.1.0.0]:1133

pthread_spin_lock.c:26 memset.S:1133

malloc.c:0 Geometry.h:0

stl_vector.h:0 Remaining MPI Time



Case Study: Calculate Percent MPI Time for 

Child Calls of MPI Functions

36

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG2013

Only children functions that 

contribute at least 10% of total MPI 

time are shown

Child Function Calls

<unknown file> 

[libmlx5.so.1.0.0]:0

<unknown file> 

[libmlx5.so.1.0.0]:1133

pthread_spin_lock.c:26 memset.S:1133

malloc.c:0 Geometry.h:0

stl_vector.h:0 Remaining MPI Time



Case Study: Identify Slow-Down Causes

37

Zoom into specific benchmarks 

(AMG2013) and examine the 

children of specific MPI 

functions (MPI_Allgather)

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

MPI Functions

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

Children Functions

MPI Function Calls

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time

Child Function Calls

<unknown file> [libmlx5.so.1.0.0]:0 <unknown file> 

[libmlx5.so.1.0.0]:1133

Geometry.h:0

pthread_spin_lock.c:26 memset.S:1133 malloc.c:0

stl_vector.h:0 Remaining MPI Time



Case Study: Identify Slow-Down Causes

38

Zoom into specific benchmarks 

(AMG2013) and examine the 

children of specific MPI 

functions (MPI_Allgather)

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

MPI Functions

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

Children Functions

MPI Function Calls

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time

Child Function Calls

<unknown file> [libmlx5.so.1.0.0]:0 <unknown file> 

[libmlx5.so.1.0.0]:1133

Geometry.h:0

pthread_spin_lock.c:26 memset.S:1133 malloc.c:0

stl_vector.h:0 Remaining MPI Time



Case Study: Identify Slow-Down Causes

39

Zoom into specific benchmarks 

(AMG2013) and examine the 

children of specific MPI 

functions (MPI_Allgather)

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

MPI Functions

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

Children Functions

MPI Function Calls

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time

Child Function Calls

<unknown file> [libmlx5.so.1.0.0]:0 <unknown file> 

[libmlx5.so.1.0.0]:1133

Geometry.h:0

pthread_spin_lock.c:26 memset.S:1133 malloc.c:0

stl_vector.h:0 Remaining MPI Time



Case Study: Identify Slow-Down Causes

40

Zoom into specific 

benchmarks 

(AMG2013) and 

examine the children 

of specific MPI 

functions 

(MPI_Allgather)

Child Function Calls

<unknown file> [libmlx5.so.1.0.0]:0 <unknown file> 

[libmlx5.so.1.0.0]:1133

Geometry.h:0

pthread_spin_lock.c:26 memset.S:1133 malloc.c:0

stl_vector.h:0 Remaining MPI Time

Allgather Children Functions

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG Children Functions



Lessons Learned: MPI

41

The 

pthread_spin_lock

function is 

consistently a major 

contributor to MPI 

runtime (i.e., 20% or 

more of MPI time)

Child Function Calls

<unknown file> [libmlx5.so.1.0.0]:0 <unknown file> 

[libmlx5.so.1.0.0]:1133

Geometry.h:0

pthread_spin_lock.c:26 memset.S:1133 malloc.c:0

stl_vector.h:0 Remaining MPI Time

Allgather Children Functions

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG Children Functions



Lessons Learned: MPI

42

In AMG2013, the 

inferior performance 

of MPI_Allgather in 

Spectrum-MPI can 

possibly be attributed 

to the use of 

pthread_spin_lock

Child Function Calls

<unknown file> [libmlx5.so.1.0.0]:0 <unknown file> 

[libmlx5.so.1.0.0]:1133

Geometry.h:0

pthread_spin_lock.c:26 memset.S:1133 malloc.c:0

stl_vector.h:0 Remaining MPI Time

Allgather Children Functions

Number of MPI Ranks

P
e

rc
e

n
t 
o

f 
M

P
I 

T
im

e

AMG Children Functions



Lessons Learned: Hatchet

• Using the query language and Hatchet, we are able to:

• Extract all call paths specific to a given library

• Determine the performance contributions of function calls used by 

these libraries

• Correlate children function calls to specific important library API calls 

in an application

• Use this correlation to determine children function calls that 

contribute the most to the performance of the targeted library API call

• Compare the correlation of children and API calls across libraries to 

determine possible causes for performance differences

43



Future Work

• Use and expand on the techniques and tools from this 

work to study large scale scalability and replicability 

problems

• Use information gained from studying these problems to propose 

mitigation strategies

• Develop tools to help others study and mitigate these problems

44



Additional Resources on Hatchet

45

Hatchet SC19 Paper Hatchet GitHubHatchet SC20 Paper



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United 

States government. Neither the United States government nor Lawrence Livermore National 

Security, LLC, nor any of their employees makes any warranty, expressed or implied, or 

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 

any information, apparatus, product, or process disclosed, or represents that its use would 

not infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the United 

States government or Lawrence Livermore National Security, LLC. The views and opinions 

of authors expressed herein do not necessarily state or reflect those of the United States 

government or Lawrence Livermore National Security, LLC, and shall not be used for 

advertising or product endorsement purposes.



Supplemental Slides

47



Case Study: Benchmarks

• Kripke (LLNL) [5]

• Mini-App Benchmark

• Deterministic

• Runs SN Neutron Transport simulation

48
[5] AJ Kunen et al. 2015. KRIPKE-A massively parallel transport mini-app. Technical Report. Lawrence Livermore National Laboratory (LLNL)



Case Study: Benchmarks

• Lammps (SNL) [6]

• Popular classical molecular dynamics simulator

• Also contains a set of benchmarks

49
[6] S. Plimpton. 1995. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1 (March 1995), 1-19



Case Study: Benchmarks

• AMG2013 (LLNL) [7]

• Parallel algebraic multigrid solver for linear systems

• Proxy App for hypre’s BoomerAMG solver

• Highly synchronous code

50
[7] U. Yang et al. 2017. Algebraic Multigrid Benchmark, Version 00. (8 2017)



Case Study: MPIs

• MVAPICH (v2.3.3)

• Project led by the Network-Based Computing Laboratory at Ohio 

State University

• Based on MPICH (Argonne National Lab)

• Conforms with MPI 3.1 standard

51



Case Study: MPIs

• Spectrum-MPI (v10.2)

• Created by IBM

• Based on OpenMPI (first created by LANL, Indiana University, 

and the University of Tennessee)

• Conforms with MPI 3.1 standard

52


