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Introduction

Neutron scattering is a
powerful probe to
study the atomic
structure and dynamics
of materials in a broad
range of applications.

Accurate determination
of neutrons is important
in neutron detection
system to ensure
accurate studies of

materials

Source: Pynn, Roger. “An Introduction to Neutron and X-Ray Scattering: SANS ...” Neutron
Science, ORNL, neutrons.ornl.gov/sites/default/files/Pynn_2019_part_2.pdf..
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Motivation

Detection of neutron events are usually
accompanied by other events such as gamma
events, noise and background radiation.

We want to explore the potential of machine
learning in improving
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Methodology
Started with unlabeled dataset
Implemented unsupervised learning
Annotated data based on domain knowledge
Applied supervised learning

Evaluated the performance of all classifiers
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Data
Unlabeled Data

Meutron 4+ gamma

Number of Features: 2
Number of Samples: 60,000
Missing Values: None

Data Preprocessing:
Min-Max Normalization

" 01 02 03 _u_'4 05
Labeled Data ruise et

Meutron + Gamma
800

Annotation of data is needed for oiee
supervised learning g
Using domain knowledge, linear %Em ;
boundaries were defined to assign 3
label to each data point -
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Models

Unsupervised: K-Means Clustering

0E KMeans prediction, k=4

Using data after pre-processing but
not annotations we ran K-means
with 2, 3, 4, and 5 seed points.
These attempts failed because K-

means looks for circular clusters A
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and we have more oblong | | Pulse Height

clusters.
Supervised: K-Nearest Neighbor (KNN)

This method successfully classified NN prediction, k=3, accuracy = 0.9980

the annotated data. i
We ran with k values between 3 o
and 10. K=3 was chosen as the

optimal value as it achieved the

best accuracy. 00
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Supervised: Support Vector Machine (SVM)

0e SVM prediction, accuracy = 0.9803

This method is also successful at R~
classification. | + gmma
Hyper parameters chosen: e
Kernel = ‘rbf’
Gamma = ‘scale’
C=1.0
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Evaluation

* Accuracy and Computational Cost
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* Confusion Matrices

Confusion Matrix for KNN Confusion Matrix for SVM
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Conclusions

* K-Means clustering showed sub-par performance with
unlabeled dataset.

KNN and SVM both consistently perform classification
with accuracy well above 95.0%. The stark difference
between the two is the computational cost. KNN is
significantly less computationally expensive compared to
SVM. KNN is more preferred to SVM in this case.
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