
Performance Comparison of MPIs using Hatchet

• Profiling is a way to measure the performance of code and how code 
runs on systems. In high-performance computing (HPC), it is commonly 
used to:
• Identify and mitigate memory, I/O bottlenecks in programs
• Improve program performance by analyzing parallelism
• Improve program performance through scalability analysis

• MPI is a standard with many implementations that defines a powerful, 
high performance form of message passing-based parallelism and 
interprocess communication.
• Most HPC programs use MPI (sometimes alongside another tool) to 

provide parallelism and best utilize system resources.
• Numerous tools for HPC profiling (e.g. TAU, Caliper, HPCToolkit) use 

their own custom data format and analysis tools.
• Locks users into only being able to analyze their data with the tools the 

profiler provides.
• Hatchet allows hierarchical profiling data from various profilers to be 

loaded and analyzed with traditional Python-based data analysis tools 
[1].

• Performed 20 runs of the following 
benchmarks (10 with MVAPICH 2.3.2 and 10 
with Spectrum-MPI 10.2) while profiling with 
HPCToolkit:
• Kripke
• Lammps (with various subpackages enabled)
• AMG2013
• Ior (running with MPI I/O support)

• Loaded the HPCToolkit databases into Hatchet 
and filtered out all non-MPI function calls. 

• Ran on UTK’s Tellico system (2 compute nodes 
with 2 16-core IBM Power9 CPUs per node)

Application 
Binary

Analyze Execution
(hpcrun)

Analyze Binary 
Code

(hpcstruct)

Call Path 
Profile

Program 
Structure

Interpret profile and 
correlate with source
(hpcprof/hpcprofmpi)

HPCToolkit
Database

Visualize and Analyze 
with HPCToolkit

(hpcviewer/
hpctraceviewer)

Read into Hatchet
Analyze with 

Hatchet and other 
Python tools

Traditional

With Hatchet

Figure 1: The HPCToolkit Workflow with both traditional data analysis with HPCToolkit’s tools 
and Hatchet-based data analysis.

• Leverage Hatchet to analyze performance of different MPIs using 
various benchmark applications.

• Identify general performance differences across MPIs that can be 
studied more in-depth in the future.

• Identify ways in which to extend Hatchet for future analysis.

Figure 2: Total time spent in MPI for each 
benchmark

Figure 3: Percent of runtime spent in MPI for each 
benchmark

Figure 4: Time spent in Point-to-Point 
Communications for each benchmark*

Figure 5: Time spent in Collective 
Communications for each benchmark*

Figure 6: Time spent in MPI I/O for each 
MPI

• MVAPICH tends to be faster than 
Spectrum-MPI, but the degree to 
which it is faster is dependent on the 
application.

• Spectrum-MPI produces a smaller 
variance in runtime than MVAPICH 
for three-quarters of the tested 
applications.

• Currently, Hatchet is very good at 
enabling and performing broad and 
general data analysis, but it is 
difficult to examine results at a 
deeper level with the current tools 
Hatchet makes available.

• Add a query language to Hatchet to 
enable more detailed and expressive 
data extraction and analysis.

• Expand on this work with more 
benchmarks and MPIs.

• Use the query language and other 
new Hatchet features to perform 
more novel analysis of MPI profiles.
• Example: determine the reason why 

MVAPICH outperformed Spectrum-
MPI with Kripke.

• Run future benchmarking on larger 
systems (i.e. Lassen) to examine the 
scalability of different MPIs.

Ian Lumsden1, Michael Wyatt1, Stephanie Brink2, Todd Gamblin2 , Michela Taufer1

* Point-to-Point and Collective Communications functions were 
chosen based on the MPI 1.0 Standard [2].

References
[1] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet,” in Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis, 2019.
[2] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and N. Sultana, “A large-scale study of MPI usage 
in open-source HPC applications,” in Proceedings of the International Conference for High Performance 
Computing, Networking, Storage and Analysis, 2019.

MPI Type

MVAPICH2

Spectrum-MPI

Introduction

Research Goals

Methods Conclusions Future Work

Results

Sponsors

1 Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA


