Performance Comparison of MPIs using Hatchet

lan Lumsden?!, Michael Wyatt!, Stephanie Brink?, Todd Gamblin?, Michela Taufer?

! Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA

Introduction Methods Future Work

* Profiling is a way to measure the performance of code and how code * Performed 20 runs of the following « MVAPICH tends to be faster than Add a query language to Hatchet to
runzon systems. In high-performance computing (HPC), it is commonly bgnhchmarks (10 with MVAPrIﬁH 2.3.]3|.and 1'Oh Spectrum-MPI, but the degree to enable more detailed and expressive
Hoe to: . , wit Spec.trum-l\/IPI 10.2) while profiling wit which it is faster is dependent on the data extraction and analysis.

* |dentify and mitigate memory, |/O bottlenecks in programs HPCToolkit: L . .
. . . application. * Expand on this work with more
* |Improve program performance by analyzing parallelism * Kripke
. . . . Spectrum-MPI produces a smaller benchmarks and MPIs.
 Improve program performance through scalability analysis * Lammps (with various subpackages enabled) . . . han MVAPICH e Useth | d oth
 MPI is a standard with many implementations that defines a powerful, « AMG2013 variance in runtime than se the query language and other
high performance form of message passing-based parallelism and + lor (running with MPI 1/O support) for threg-quarters of the tested new Hatchet featu.res to perform
interprocess communication. Loaded the HPCToolkit databases into Hatchet applications. more novel analysis of MPI profiles.
* Most HPC programs use MPI (sometimes alongside another tool) to and filtered out all non-MPI function calls. * Currently, Hatchet is very good at * Example: determine the reason why
provide parallelism and best utilize system resources. e Ran on UTK’s Tellico system (2 compute nodes enabling and performing broad and MVAPICH outperformed Spectrum-

* Numerous tools for HPC profiling (e.g. TAU, Caliper, HPCToolkit) use
their own custom data format and analysis tools.
* Locks users into only being able to analyze their data with the tools the
profiler provides.
* Hatchet allows hierarchical profiling data from various profilers to be
loaded and analyzed with traditional Python-based data analysis tools

[1].

with 2 16-core IBM Power9 CPUs per node) MPI with Kripke.
 Run future benchmarking on larger
systems (i.e. Lassen) to examine the

scalability of different MPls.

general data analysis, but it is
difficult to examine results at a
deeper level with the current tools
Hatchet makes available.

Results

=
o
Ul

. : 10° v
Analyze Execution I Cs” I;_Tth ’m;_ k=(9 100 MPI Type
(hpcrun) rofiie ;’ -
— 108 80
Ayl & J S = - MVAPICH?2
Binary 4 D\ — =
Analyze Binary Program = 10’ < 60 - Spectrum-l\/l Pl
Code 5 c & e8
Structure 8
(hpcstruct) = L 40
-) © 10° =
% 4+
e, ® =
Traditional W S 20 7
E O
= @
a

4)

Interpret profile and
correlate with source
(hpcprof/hpcprofmpi)
- /)

HPCToolkit
Database

With Hatchet

Figure 1: The HPCToolkit Workflow with both traditional data analysis with HPCToolkit’s tools
and Hatchet-based data analysis.

Research Goals

 Leverage Hatchet to analyze performance of different MPIs using
various benchmark applications.

* |dentify general performance differences across MPIs that can be
studied more in-depth in the future.

* Identify ways in which to extend Hatchet for future analysis.

T

THE UNIVERSITY OF Sponsors

TENNESSEE

KNOXVILLE

Time spent in
P2P Communication (us)
=
o

(-
o
n

lor

o

kripke lammps
Benchmark App

amg2013

Figure 2: Total time spent in MPI for each
benchmark

-
o
(®)]

kripke lammps

Benchmark App

amg2013

Figure 4: Time spent in Point-to-Point
Communications for each benchmark*

Time spent in
Collective Communication (us)

lor kripke
Benchmark App

lammps amg2013

Figure 3: Percent of runtime spent in MPI for each
benchmark

p—d
o
~J

=
@)
(o)}

p—d
o
|9

-
)
N

(-
o
W

(-
o
N

kripke lammps
Benchmark App

amg2013

Figure 5: Time spent in Collective
Communications for each benchmark*

* Point-to-Point and Collective Communications functions were

chosen based on the MPI 1.0 Standard [2].

(@)

)

Time spent in MPI I/O (us)
w -

N

ior

Benchmark App

Figure 6: Time spent in MPI I/O for each
MPI

References

[1] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019.

[2] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and N. Sultana, “A large-scale study of MPI usage

in open-source HPC applications,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019.

